Introduit une régression linéaire et logistique, couvrant les modèles paramétriques, la prédiction multi-sorties, la non-linéarité, la descente de gradient et les applications de classification.
Explore des méthodes d'optimisation telles que la descente de gradient et les sous-gradients pour la formation de modèles d'apprentissage automatique, y compris des techniques avancées telles que l'optimisation d'Adam.
Discute des techniques d'optimisation avancées, en se concentrant sur des méthodes de descente de gradient plus rapides et projetées dans l'apprentissage automatique.
Couvre les techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la convexité et ses implications pour une résolution efficace des problèmes.
Couvre des méthodes de descente de gradient plus rapides et une descente de gradient projetée pour une optimisation contrainte dans l'apprentissage automatique.
Explore l'optimisation convexe, en soulignant l'importance de minimiser les fonctions dans un ensemble convexe et l'importance des processus continus dans l'étude des taux de convergence.
Discute des techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la descente de gradient stochastique et ses applications dans les problèmes contraints et non convexes.