Explore la résolution du problème Poisson en utilisant la transformée de Fourier, en discutant des termes sources, des conditions aux limites et de l'unicité de la solution.
Explore les propriétés de la transformée de Fourier avec des dérivés, cruciales pour la résolution des équations, et introduit la transformée de Laplace pour la transformation du signal.
Couvre la solution des équations de Maxwell en utilisant des fonctions vertes avancées et retardées, en se concentrant sur l'électrostatique avec des conditions limites générales.
Explore les propriétés de la transformée de Fourier avec des dérivés et introduit la transformée de Laplace pour la transformation du signal et la résolution des équations différentielles.
Explore Fourier et Laplace se transforment en science des matériaux, en mettant l'accent sur l'interaction lumière-matière, les motifs de diffraction et les propriétés cristallines.