Discute de la classification des surfaces et de leurs groupes fondamentaux en utilisant le théorème de Seifert-van Kampen et les présentations polygonales.
Couvre la théorie de la dimension des anneaux, y compris l'additivité de la dimension et de la hauteur, Hauptidealsatz de Krull, et la hauteur des intersections générales complètes.
Couvre les bases de la topologie, en mettant l'accent sur la cohomologie et les espaces de quotient, en mettant l'accent sur leurs définitions et leurs propriétés à travers des exemples et des exercices.
Fournit un aperçu des groupes fondamentaux en topologie et de leurs applications, en se concentrant sur le théorème de Seifert-van Kampen et ses implications pour le calcul des groupes fondamentaux.