Passer au contenu principal
Graph
Search
fr
en
Se Connecter
Recherche
Tous
Catégories
Concepts
Cours
Séances de cours
MOOCs
Personnes
Exercices
Publications
Start-ups
Unités
Afficher tous les résultats pour
Accueil
Séance de cours
Analyse avancée II: propriétés et applications
Graph Chatbot
Séances de cours associées (32)
Précédent
Page 1 sur 4
Suivant
Analyse avancée II: ensembles jordan-mesurables
Explore les ensembles mesurables en Jordanie et leurs propriétés, y compris les calculs de volume et le changement de variables dans les intégrales.
Analyse avancée II: fonctions mesurables en Jordanie
Explore les fonctions mesurables Jordan et les doubles intégrales pour les calculs de volume dans l'espace 3D.
Le théorème de Fubini : plusieurs intégrales
Explore le théorème de Fubini pour de multiples intégrales, en mettant l'accent sur le cas n 2.
Théorème de Fubini sur les rectangles fermés
Explore le théorème de Fubini sur les rectangles fermés dans R2, discutant de l'intégrabilité, des intégrales itérées et des ensembles compacts.
Riemann Integral: Propriétés et Caractérisation
Explore les propriétés et la caractérisation de l'intégrale de Riemann sur différents ensembles et ensembles mesurables.
Integrals multiples: Définitions et propriétés
Couvre la définition et les propriétés de multiples intégrales, y compris les intégrales doubles et triples.
Riemann Integral: Construction et propriétés
Explore la construction et les propriétés de l'intégrale de Riemann, y compris les propriétés intégrales et le théorème de la valeur moyenne.
Lebesgue Integral : Comparaison avec Riemann
Explore la comparaison entre les intégrales de Lebesgue et de Riemann, démontrant leur équivalence lorsque l'intégrale de Riemann existe.
Calcul intégral multivariable
Couvre le calcul intégral multivariable, y compris les cuboïdes rectangulaires, les subdivisions, les sommes du Douboux, le théorème de Fubini et l'intégration sur des ensembles délimités.
Taylor Series et Riemann Integral
Explore les extensions de la série Taylor et les intégrales de Riemann, y compris les limites, la convergence, les subdivisions et les sommes.