Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les bases de l'apprentissage automatique, y compris les techniques supervisées et non supervisées, la régression linéaire et la formation des modèles.
Explore comment les variables instrumentales corrigent les biais à partir des erreurs de mesure et de la causalité inverse dans les modèles de régression.
Couvre la régression linéaire, la régression pondérée, la régression pondérée localement, la régression vectorielle de soutien, la manipulation du bruit et la cartographie oculaire à l'aide de SVR.
Couvre les bases de régression linéaire, en se concentrant sur la minimisation des erreurs en utilisant le principe des moindres carrés et comprend une table ANOVA et un exemple pratique dans R.
Explore la régression linéaire à travers les moindres carrés et les équations normales, en soulignant l'importance de minimiser les erreurs pour des prédictions précises.
Couvre l'analyse des données bivariées, la corrélation et les techniques de régression, y compris l'interprétation des coefficients et de la géométrie des moindres carrés.