Discute des arbres de décision et des forêts aléatoires, en se concentrant sur leur structure, leur optimisation et leur application dans les tâches de régression et de classification.
Couvre la théorie du traitement du signal numérique, y compris l'échantillonnage, les méthodes de transformation, la numérisation et les contrôleurs PID.
Explore l'évaluation des modèles avec K-Nearest Neighbor, couvrant la sélection optimale de k, les mesures de similarité et les mesures de performance pour les modèles de classification.
Explore le sous-ajustement, le surajustement, les hyperparamètres, le compromis biais-variance et l'évaluation de modèle dans l'apprentissage automatique.
Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.