Couvre les matrices définies non négatives, les matrices de covariance et l'analyse en composantes principales pour une réduction optimale des dimensions.
Couvre la règle d'Oja dans les neurorobotiques, se concentrant sur l'apprentissage des eigenvectors et des valeurs propres pour capturer la variance maximale.
Couvre les distributions conditionnelles et les corrélations dans les statistiques multivariées, y compris la variance partielle et la covariance, avec les applications aux distributions non normales.
Explore la génération de vecteurs aléatoires gaussiens avec des composantes spécifiques basées sur des valeurs observées et explique le concept de fonctions de covariance définies positives dans les processus gaussiens.