Explore l'orthogonalité, les normes vectorielles et les sous-espaces dans l'espace euclidien, y compris la détermination des compléments orthogonaux et des propriétés des sous-espaces et des matrices.
Explore les opérateurs différentiels, les courbes régulières, les normes et les fonctions injectives, en répondant aux questions sur les propriétés, les normes, la simplicité et l'injectivité des courbes.
Couvre les espaces normés, les espaces doubles, les espaces de Banach, les espaces de Hilbert, la convergence faible et forte, les espaces réflexifs et le théorème de Hahn-Banach.
Couvre les produits scalaires, les vecteurs orthogonaux, les normes et les projections dans les espaces vectoriels, en mettant l'accent sur les familles orthonormales de vecteurs.