Dérivée directionnelleEn analyse mathématique, la notion de dérivée directionnelle permet de quantifier la variation locale d'une fonction dépendant de plusieurs variables, en un point donné et le long d'une direction donnée dans l'espace de ces variables. Dans la version la plus simple, la dérivée directionnelle généralise la notion de dérivées partielles, dans le sens où l'on retrouve ces dernières en prenant comme directions de dérivation les axes de coordonnées. Le concept de dérivée directionnelle est fondamental en analyse.
DérivéeEn mathématiques, la dérivée d'une fonction d'une variable réelle mesure l'ampleur du changement de la valeur de la fonction (valeur de sortie) par rapport à un petit changement de son argument (valeur d'entrée). Les calculs de dérivées sont un outil fondamental du calcul infinitésimal. Par exemple, la dérivée de la position d'un objet en mouvement par rapport au temps est la vitesse (instantanée) de l'objet. La dérivée d'une fonction est une fonction qui, à tout nombre pour lequel admet un nombre dérivé, associe ce nombre dérivé.
Dérivée covarianteEn géométrie différentielle, la dérivée covariante est un outil destiné à définir la dérivée d'un champ de vecteurs sur une variété. Dans le cas où la dérivée covariante existe, il n'existe pas de différence entre la dérivée covariante et la connexion, à part la manière dont elles sont introduites. (Cela est faux quand la dérivée covariante n'existe pas en revanche ).
Fréchet derivativeIn mathematics, the Fréchet derivative is a derivative defined on normed spaces. Named after Maurice Fréchet, it is commonly used to generalize the derivative of a real-valued function of a single real variable to the case of a vector-valued function of multiple real variables, and to define the functional derivative used widely in the calculus of variations. Generally, it extends the idea of the derivative from real-valued functions of one real variable to functions on normed spaces.
Dérivée extérieureEn mathématiques, la dérivée extérieure, opérateur de la topologie différentielle et de la géométrie différentielle, étend le concept de la différentielle d'une fonction aux formes différentielles de degré quelconque. Elle permet de définir les formes différentielles fermées et exactes. Elle est importante dans la théorie de l'intégration sur les variétés, et elle est la différentielle employée pour définir la cohomologie de De Rham et celle d'Alexander-Spanier. Sa forme actuelle fut inventée par Élie Cartan.