Séance de cours

Clusters et communautés

Description

Cette séance de cours couvre les concepts de clustering et de détection de communauté. Le clustering consiste à trouver des ensembles de points proches les uns des autres dans une métrique de distance, tandis que la détection de communauté se concentre sur l’identification de nœuds hautement interconnectés dans un réseau. L'algorithme K-means est introduit pour le clustering, ainsi que son processus d'approximation itératif. La séance de cours passe ensuite à des modèles de mélange gaussien (GMM) pour le clustering, expliquant lalgorithme EM pour GMM. La modularité est discutée comme une mesure de la force de la communauté, en mettant l'accent sur l'interprétation et le calcul de la modularité. La méthode Louvain pour la détection des communautés est présentée comme une approche ascendante pour construire une hiérarchie des communautés. La séance de cours se termine en soulignant les défis des techniques non supervisées et en fournissant des références pour une étude plus approfondie.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.