Passer au contenu principal
Graph
Search
fr
en
Se Connecter
Recherche
Tous
Catégories
Concepts
Cours
Séances de cours
MOOCs
Personnes
Exercices
Publications
Start-ups
Unités
Afficher tous les résultats pour
Accueil
Séance de cours
Espaces vectoriaux : propriétés et opérations
Graph Chatbot
Séances de cours associées (27)
Précédent
Page 1 sur 3
Suivant
Algèbre linéaire : concepts abstraits
Introduit des concepts abstraits en algèbre linéaire, en se concentrant sur les opérations avec des vecteurs et des matrices.
Polynômes : Opérations et propriétés
Explore les opérations polynômes, les propriétés et les sous-espaces dans les espaces vectoriels.
Combinaisons linéaires et espaces vectoriels
Introduit des combinaisons linéaires dans les espaces vectoriels, les opérations et les polynômes de degré 2.
Orthogonalité et relations subspatiales
Explore l'orthogonalité entre les vecteurs et les sous-espaces, démontrant des implications pratiques dans les opérations matricielles.
Espaces vectoriels: propriétés et exemples
Explore les espaces vectoriels, en se concentrant sur les propriétés, les exemples et les sous-espaces dans un exercice pratique sur les polynômes.
Algèbre linéaire: espaces vectoriels et indépendance linéaire
Couvre les espaces vectoriels, les opérations et l'indépendance linéaire avec des exemples de polynômes et de fonctions.
Opérations matricielles : Systèmes linéaires et solutions
Explore les opérations matricielles, les systèmes linéaires, les solutions et la portée des vecteurs en algèbre linéaire.
Indépendance linéaire et bases dans les espaces vectoriaux
Explique l'indépendance linéaire, les bases et la dimension dans les espaces vectoriels, y compris l'importance de l'ordre des vecteurs dans une base.
Orthogonalité et projection
Couvre l'orthogonalité, les produits scalaires, les bases orthogonales et la projection vectorielle en détail.
Espaces vectoriels: définitions et applications
Présente des espaces vectoriels, des sous-espaces, des cartes linéaires et des cartes d'évaluation, avec des exemples et des exercices pour une meilleure compréhension.