Séance de cours

Apprentissage auto-supervisé: État de l'art

Séances de cours associées (32)
Introduction à l'apprentissage automatique
Fournit un aperçu de l'apprentissage automatique, y compris le contexte historique, les tâches clés, et les applications du monde réel.
Brises de l'apprentissage automatique
Couvre les bases de l'apprentissage automatique, les défis en matière de déploiement, les attaques contradictoires et les préoccupations en matière de protection de la vie privée.
Apprentissage autosupervisé pour les véhicules autonomes
Explore l'apprentissage autosupervisé pour les véhicules autonomes, en dérivant des étiquettes de données elles-mêmes et en discutant de ses applications et de ses défis.
Paysage et généralisation dans l'apprentissage profond
Explore les défis et les points de vue de l'apprentissage profond, en mettant l'accent sur le paysage des pertes, la généralisation et l'apprentissage caractéristique.
Apprentissage automatique pour les physiciens et les chimistes : Classification de l'image
Couvre les fondamentaux de l'apprentissage automatique pour les physiciens et les chimistes, en mettant l'accent sur les tâches de classification d'images à l'aide de l'intelligence artificielle.
Introduction à l'apprentissage automatique
Couvre les bases de l'apprentissage automatique pour les physiciens et les chimistes, en mettant l'accent sur la classification des images et l'étiquetage des ensembles de données.
Apprentissage supervisé non linéaire
Explore le biais inductif de différentes méthodes d'apprentissage supervisé non linéaires et les défis de l'accordage hyperparamétrique.
Radar pénétrant au sol : analyse des données
Explore le picking automatisé des barres de renforcement dans les données radar pénétrantes au sol à l'aide de techniques d'apprentissage automatique et de traitement du signal.
Amélioration des modèles du chemin visuel ventral
Explore les modèles de calcul du système visuel ventral, en se concentrant sur l'optimisation des réseaux pour les tâches réelles et la comparaison avec les données cérébrales.
Évaluation du modèle et réglage de l'hyperparamètre
Explore l'évaluation des modèles, le réglage hyperparamétrique et les stratégies de rééchantillonnage dans l'apprentissage automatique.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.