Modèles stochastiques pour les communications: Chaînes Markov à temps discret - Temps d'absorption
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore un modèle de Markov de premier ordre à laide dun exemple de source ensoleillée-pluie, démontrant comment les événements passés influencent les résultats futurs.
Explore les paires unilatérales et bilatérales dans les tests d'hypothèses statistiques, couvrant les valeurs critiques, les statistiques de test et les valeurs de p.
Plonge dans les chaînes de Markov en analysant un scénario avec deux puces se déplaçant dans des directions opposées, explorant les matrices de transition et les probabilités au fil du temps.
Explore la réversibilité dans les chaînes de Markov et son impact sur la distribution stationnaire, en soulignant la complexité des chaînes non réversibles.
Introduit des modèles de Markov cachés, expliquant les problèmes de base et les algorithmes comme Forward-Backward, Viterbi et Baum-Welch, en mettant laccent sur lattente-Maximisation.