Explore la diagonalisation des matrices à travers des valeurs propres et des vecteurs propres, en soulignant l'importance des bases et des sous-espaces.
Explore les valeurs propres et les vecteurs propres, démontrant leur importance dans l'algèbre linéaire et leur application dans la résolution de systèmes d'équations.
Couvre la théorie et les exemples de matrices de diagonalisation, en se concentrant sur les valeurs propres, les vecteurs propres et lindépendance linéaire.
Explore la similarité de la matrice, la diagonalisation, les polynômes caractéristiques, les valeurs propres et les vecteurs propres dans l'algèbre linéaire.
Couvre les concepts fondamentaux de l'algèbre linéaire, y compris les équations linéaires, les opérations matricielles, les déterminants et les espaces vectoriels.
Explore la base canonique en algèbre linéaire, en se concentrant sur la représentation matricielle, la diagonalisation et les polynômes caractéristiques.
Explore les valeurs propres et les vecteurs propres dans l'algèbre linéaire 3D, couvrant les polynômes caractéristiques, la stabilité sous les transformations, et les racines réelles.