Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit les bases de la connectomique cérébrale, y compris la terminologie, le prétraitement des données, l'IRM fonctionnelle, les mesures de connectivité et la structure modulaire.
Souligne la reproductibilité et la réutilisabilité des données dans les neurosciences silico, en mettant l'accent sur les outils et les méthodes de neuroinformatique.
Introduit des approches et des applications modernes en neuroscience, mettant l'accent sur la modélisation computationnelle et son importance dans la compréhension du cerveau.
Explore la théorie des graphes dans la connectomique cérébrale, les applications d'IRM, la pertinence de l'analyse de réseau et les empreintes digitales individuelles.
Explore l'intégration de la connectivité cérébrale pour décoder et interpréter l'activité cérébrale à l'aide du traitement des signaux graphiques et des réseaux résiduels spectraux.
Couvre les bases de la connectomique cérébrale, y compris les réseaux du cerveau, la terminologie, les schémas de données, le prétraitement, la connectivité des noeuds et la structure fonctionnelle du connectome.
Explore l'analyse des données synaptiques, les connexions cartographiques et la dynamique, en mettant l'accent sur la variabilité des réponses synaptiques.