Apprentissage sans supervision : regroupement et réduction de dimensionnalité
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la classification des données textuelles, en se concentrant sur des méthodes telles que les bayes naïques et les techniques de réduction de la dimensionnalité telles que l'analyse des composantes principales.
Couvre l'expansion des fonctionnalités polynômes, les fonctions du noyau, la régression et le SVM, soulignant l'importance de choisir les fonctions pour l'expansion des fonctionnalités.
Couvre les fondamentaux de l'apprentissage automatique avancé, mettant l'accent sur les applications pratiques par des exercices et des projets interactifs.
Explore Kernel Principal Component Analysis, une méthode non linéaire utilisant des noyaux pour la résolution linéaire de problèmes et la réduction des dimensions.
Se penche sur les défis de l'apprentissage profond, en explorant la dimensionnalité, les performances et les phénomènes sur-adaptés dans les réseaux neuronaux.