Par Yakov Pesin se penche sur le phénomène essentiel de coexistence dans la dynamique hamiltonienne, explorant les types I et II et fournissant des exemples et des preuves.
Explore les propriétés de mélange des systèmes de conservation de mesures infinies, en mettant l'accent sur les suspensions, les transformations de Govers et le gaz Lorentz.
Couvre la théorie de l'échantillonnage de Markov Chain Monte Carlo (MCMC) et discute des conditions de convergence, du choix de la matrice de transition et de l'évolution de la distribution cible.
Couvre des courbes modulaires comme des surfaces compactes de Riemann, expliquant leur topologie, la construction de graphiques holomorphes et leurs propriétés.