Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'apprentissage automatique atomistique, intégrant les principes physiques dans les modèles pour prédire avec précision les propriétés moléculaires.
Explore les méthodes avancées d'intégrale de chemin dans la science informatique, couvrant l'échantillonnage efficace, le bruit coloré, les intégrales de haut ordre, et les thermostats quantiques.
Explore des méthodes numériques stochastiques efficaces pour la modélisation et l'apprentissage, couvrant des sujets comme le moteur d'analyse et les inhibiteurs de la kinase.
Couvre la théorie et les applications pratiques des simulations de pliage de protéines en utilisant la dynamique moléculaire, en se concentrant sur les effets des solvants et l'analyse de la dynamique de pliage.
Offre une introduction pratique à la modélisation à l'échelle atomique à travers des carnets Jupyter, en mettant l'accent sur les concepts fondamentaux de la science des matériaux.
Explore les surfaces d'énergie potentielles dans les simulations de dynamique moléculaire et l'utilisation de méthodes mécaniques quantiques / moléculaires mixtes.
Explore l'approche de distribution quasi-stationnaire dans la modélisation de la dynamique moléculaire, couvrant la dynamique de Langevin, la métastabilité et les modèles cinétiques de Monte Carlo.