Explore des techniques d'optimisation telles que la descente de gradient, la recherche de lignes et la méthode de Newton pour une résolution efficace des problèmes.
Explore les méthodes itératives pour les équations linéaires, y compris les méthodes Jacobi et Gauss-Seidel, les critères de convergence et la méthode du gradient conjugué.
Introduit des méthodes itératives pour les équations linéaires, les critères de convergence, le gradient des formes quadratiques et les champs de force classiques dans les systèmes atomistiques complexes.
Explore le rôle du calcul dans les mathématiques de données, en mettant l'accent sur les méthodes itératives, l'optimisation, les estimateurs et les principes d'ascendance.
Fournit un aperçu des méthodes de gradient conjugué, y compris le préconditionnement, le gradient conjugué non linéaire et la décomposition des valeurs singulières.
Couvre la méthode des gradients conjugués pour résoudre les systèmes linéaires itérativement avec la convergence quadratique et souligne l'importance de l'indépendance linéaire entre les directions conjuguées.