Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les modèles linéaires, la régression, la prédiction multi-sorties, la classification, la non-linéarité et l'optimisation basée sur le gradient.
Couvre l'optimisation non convexe, les problèmes d'apprentissage profond, la descente stochastique des gradients, les méthodes d'adaptation et les architectures réseau neuronales.
Explore l'apprentissage par machine contradictoire, les réseaux d'adversaires génériques et les défis des exemples d'adversaires dans l'optimisation des données.
Explore l'optimisation convexe dans la réduction de la dimensionnalité non linéaire, en présentant des applications pratiques dans les tâches de traitement du signal et de régression.
Compare L1 et L0 pénalisation en régression linéaire avec des conceptions orthogonales en utilisant des algorithmes gourmands et des comparaisons empiriques.
Explore les modèles de signaux concis, la détection compressive, la parcimonie, les normes atomiques et la minimisation non lisse en utilisant la descente de sous-gradient.
Explore l'explication géométrique des raisons pour lesquelles les solutions Lasso sont rares et comment les coefficients changent avec le paramètre de régularisation.
S'insère dans l'automatisation de la synthèse chimique par la découverte et l'optimisation de catalyseurs à l'aide de l'apprentissage automatique et de la chimie computationnelle.