Explore les distributions de probabilité pour les variables aléatoires dans les études sur la pollution atmosphérique et le changement climatique, couvrant les statistiques descriptives et inférentielles.
S'inscrit dans les limites fondamentales de l'apprentissage par gradient sur les réseaux neuronaux, couvrant des sujets tels que le théorème binôme, les séries exponentielles et les fonctions génératrices de moments.
Explore des modèles stochastiques pour les communications, couvrant la moyenne, la variance, les fonctions caractéristiques, les inégalités, diverses variables aléatoires discrètes et continues, et les propriétés de différentes distributions.
Explore les fonctions de masse binomiale et de Poisson, calculant les probabilités et discutant des fonctions de distribution des variables aléatoires.