Fournit un aperçu de la théorie des probabilités de base, de l'ANOVA, des tests t, du théorème de limite centrale, des métriques, des intervalles de confiance et des tests non paramétriques.
Explore les tests d'hypothèses statistiques, y compris la construction d'intervalles de confiance, l'interprétation des valeurs p et la prise de décisions en fonction des niveaux d'importance.
Explore les tests t, les intervalles de confiance, l'ANOVA et les tests d'hypothèse dans les statistiques, en soulignant l'importance d'éviter les fausses découvertes et de comprendre la logique derrière les tests statistiques.
Introduit le test chi-carré pour le test d'hypothèse par rapport aux distributions théoriques, en présentant son application avec des tests d'équité des dés.
Couvre les probabilités, les variables aléatoires, les attentes, les GLM, les tests d'hypothèse et les statistiques bayésiennes avec des exemples pratiques.
Couvre les concepts fondamentaux de probabilité et de statistiques, y compris les résultats intéressants, le modèle standard, le traitement de l'image, les espaces de probabilité et les tests statistiques.