Explore la préparation des données pour l'apprentissage automatique, en mettant l'accent sur la conversion numérique et les techniques efficaces de visualisation des données.
Couvre l'analyse en composantes principales pour la réduction dimensionnelle des données biologiques, en se concentrant sur la visualisation et l'identification des modèles.
Souligne l’importance de la préparation aux données dans les interventions en cas de catastrophe et explore des stratégies pour combler les lacunes et les surcharges en matière d’information.
Couvre la tâche d'analyse des données du NABEL, en mettant l'accent sur les compétences en analyse des données et le formatage des rapports pour les concentrations de pollution atmosphérique et la météorologie.
Couvre l'utilisation pratique de QGIS pour l'analyse et la visualisation des données spatiales, y compris le géoréférencement des cartes historiques et la manipulation des données vectorielles.
Couvre les principes fondamentaux de la science des données, l'évolution des méthodes scientifiques, le rôle d'un data scientist et l'importance des données en tant que nouveau pétrole.