Couvre les systèmes de coordonnées accélérés et inertiels, jacobiens, les éléments de volume, les dérivés covariants, les symboles Christoffel, le cas Lorentz et les propriétés tenseurs métriques.
Couvre le rôle des symétries et des groupes dans la mécanique quantique, en se concentrant sur SU2 et SU3, leurs propriétés et leurs implications pour les théories physiques.
Discute des transformations des tenseurs et de la diagonalisation des tenseurs symétriques, en se concentrant sur l'analyse des contraintes et la signification des contraintes principales.
Couvre les bases des tenseurs, y compris leur définition, leurs propriétés et leur décomposition, en commençant par un exemple motivant impliquant des distributions gaussiennes.