Couvre les réseaux neuronaux convolutifs, les architectures standard, les techniques de formation et les exemples contradictoires en apprentissage profond.
Introduit des fondamentaux d'apprentissage profond, couvrant les représentations de données, les réseaux neuronaux et les réseaux neuronaux convolutionnels.
Explore la dynamique d'apprentissage des réseaux neuronaux profonds en utilisant des réseaux linéaires pour l'analyse, couvrant les réseaux à deux couches et à plusieurs couches, l'apprentissage autosupervisé et les avantages de l'initialisation découplée.
Explore la capacité des réseaux de neurones à apprendre des fonctionnalités et à faire des prédictions linéaires, en soulignant l'importance de la quantité de données pour une performance efficace.
Explore l'optimalité des splines pour l'imagerie et les réseaux neuraux profonds, démontrant la sparosité et l'optimalité globale avec les activations des splines.
Présente les réseaux neuronaux convolutifs, en expliquant leur architecture, leur processus de formation et leurs applications dans les tâches de segmentation sémantique.
Couvre les fondamentaux des réseaux de neurones profonds et des splines, explorant leurs propriétés, leurs implications et leurs applications dans l'apprentissage automatique moderne.
Introduit un cadre fonctionnel pour les réseaux neuronaux profonds avec des splines adaptatives linéaires à la pièce, mettant l'accent sur la reconstruction de l'image biomédicale et les défis des splines profondes.