Explore les méthodes itératives pour les équations linéaires, y compris les méthodes Jacobi et Gauss-Seidel, les critères de convergence et la méthode du gradient conjugué.
Couvre la méthode des gradients conjugués pour résoudre les systèmes linéaires itérativement avec la convergence quadratique et souligne l'importance de l'indépendance linéaire entre les directions conjuguées.
Explore l'analyse des flux non confinés en géomécanique, en mettant l'accent sur les méthodes itératives de solution et les considérations relatives à l'état des limites.
Couvre le concept de descente de gradient dans les cas scalaires, en se concentrant sur la recherche du minimum d'une fonction en se déplaçant itérativement dans la direction du gradient négatif.