Couvre les Perceptrons multicouches, les neurones artificiels, les fonctions d'activation, la notation matricielle, la flexibilité, la régularisation, la régression et les tâches de classification.
Se penche sur la simulation de la dynamique du réseau dans les neurosciences silico, couvrant l'activité spontanée et évoquée, les simulations in-vitro et in-vivo, et l'analyse de sensibilité.
Explore la dynamique des populations neuronales, en mettant l'accent sur les réseaux aléatoires et les arguments de terrain moyen pour la connectivité.
Explore les réseaux de neurones piquants, les modèles de champ moyen, les fonctions de transfert et les prédictions de l'espace d'état et du comportement neuronal.
Par Meenakshi Khosla explore la modélisation basée sur les données dans les neurosciences naturalistes à grande échelle, en mettant l'accent sur la représentation de l'activité cérébrale et les modèles de calcul.
Explore le concept de champ moyen stationnaire dans les neurosciences computationnelles pour prédire l'activité neuronale en fonction de la population et des taux de déclenchement d'un seul neurone.