Réseaux de neurones: caractéristiques aléatoires et régression du noyau
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les noyaux pour simplifier la représentation des données et la rendre linéairement séparable dans les espaces de fonctionnalités, y compris les fonctions populaires et les exercices pratiques.
Couvre l'intelligence visuelle, les réseaux de rétroaction, la prédiction basée sur la taxonomie et les réseaux neuronaux récurrents pour la classification des images.
Couvre les bases NeuroM, y compris la vérification de la qualité des neurones, l'extraction de la morphométrie et la visualisation des neurones dans différents formats.
Couvre les mécanismes de rétroaction dans l'intelligence visuelle, l'estimation des poses humaines, l'adaptation motrice dans les robots à pattes et les contrôleurs PID.