Explore la dynamique des débits réguliers d'Euler sur les collecteurs Riemanniens, couvrant les fluides idéaux, les équations d'Euler, les débits eulérisables et les obstacles à l'exposition des bouchons.
Explore les méthodes d'optimisation, y compris la convexité, la descente en gradient et la minimisation non convexe, avec des exemples comme l'estimation de la probabilité maximale et la régression des crêtes.
Introduit Manopt, une boîte à outils pour l'optimisation sur les collecteurs, en se concentrant sur la résolution des problèmes d'optimisation sur les collecteurs lisses à l'aide de la version Matlab.
Couvre le concept de descente de gradient dans les cas scalaires, en se concentrant sur la recherche du minimum d'une fonction en se déplaçant itérativement dans la direction du gradient négatif.
Explore les méthodes de descente des gradients pour optimiser les fonctions sur les collecteurs, en mettant l'accent sur les petites garanties de gradient et la convergence globale.
Couvre l'optimalité des taux de convergence dans les méthodes de descente en gradient accéléré et stochastique pour les problèmes d'optimisation non convexes.