Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Héritage (informatique)En programmation orientée objet, l’héritage est un mécanisme qui permet, lors de la déclaration d’une nouvelle classe, d'y inclure les caractéristiques d’une autre classe. L'héritage établit une relation de généralisation-spécialisation qui permet d'hériter dans la déclaration d’une nouvelle classe (appelée classe dérivée, classe fille, classe enfant ou sous-classe) des caractéristiques (propriétés et méthodes) de la déclaration d'une autre classe (appelée classe de base, classe mère, classe parent ou super-classe).
Camérathumb|Arrière de la caméra argentique Mitchell BNC dotée en supplément sur le côté droit d'un enregistreur vidéo analogique, utilisée par Stanley Kubrick pour pouvoir rapidement monter un "brouillon" de son film Apocalypse Now lors du tournage, avant toute opération de montage sur la pellicule photographique même. Une caméra est un appareil de prise de vues destiné à enregistrer ou à transmettre des images photographiques successives afin de restituer l'impression de mouvement pour le cinéma, la télévision, la recherche, la télésurveillance, l'imagerie industrielle et , ou bien pour d'autres applications, professionnelles ou domestiques.
Vision par ordinateurLa vision par ordinateur est un domaine scientifique et une branche de l’intelligence artificielle qui traite de la façon dont les ordinateurs peuvent acquérir une compréhension de haut niveau à partir d's ou de vidéos numériques. Du point de vue de l'ingénierie, il cherche à comprendre et à automatiser les tâches que le système visuel humain peut effectuer. Les tâches de vision par ordinateur comprennent des procédés pour acquérir, traiter, et « comprendre » des images numériques, et extraire des données afin de produire des informations numériques ou symboliques, par ex.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Tempsthumb|Chronos, dieu du temps de la mythologie grecque, par Ignaz Günther, Bayerisches Nationalmuseum à Munich. vignette|Montre à gousset ancienne Le temps est une notion qui rend compte du changement dans le monde. Le questionnement s'est porté sur sa « nature intime » : propriété fondamentale de l'Univers, ou produit de l'observation intellectuelle et de la perception humaine. La somme des réponses ne suffit pas à dégager un concept satisfaisant du temps.
Classe (informatique)En programmation orientée objet, la déclaration d'une classe regroupe des membres, méthodes et propriétés (attributs) communs à un ensemble d'objets. La classe déclare, d'une part, des attributs représentant l'état des objets et, d'autre part, des méthodes représentant leur comportement. Une classe représente donc une catégorie d'objets. Elle apparaît aussi comme un moule ou une usine à partir de laquelle il est possible de créer des objets ; c'est en quelque sorte une « boîte à outils » qui permet de fabriquer un objet.
Détection d'objetthumb|Détection de visage avec la méthode de Viola et Jones. En vision par ordinateur on désigne par détection d'objet (ou classification d'objet) une méthode permettant de détecter la présence d'une instance (reconnaissance d'objet) ou d'une classe d'objets dans une . Une attention particulière est portée à la détection de visage et la détection de personne. Ces méthodes font souvent appel à l'apprentissage supervisé et ont des applications dans de multiples domaines, tels la ou la vidéo surveillance.
Segmentation d'imageLa segmentation d'image est une opération de s consistant à détecter et rassembler les pixels suivant des critères, notamment d'intensité ou spatiaux, l'image apparaissant ainsi formée de régions uniformes. La segmentation peut par exemple montrer les objets en les distinguant du fond avec netteté. Dans les cas où les critères divisent les pixels en deux ensembles, le traitement est une binarisation. Des algorithmes sont écrits comme substitut aux connaissances de haut niveau que l'homme mobilise dans son identification des objets et structures.
Recherche d'informationLa recherche d'information (RI) est le domaine qui étudie la manière de retrouver des informations dans un corpus. Celui-ci est composé de documents d'une ou plusieurs bases de données, qui sont décrits par un contenu ou les métadonnées associées. Les bases de données peuvent être relationnelles ou non structurées, telles celles mises en réseau par des liens hypertexte comme dans le World Wide Web, l'internet et les intranets. Le contenu des documents peut être du texte, des sons, des images ou des données.