Magnétorésistance géanteLa magnétorésistance géante (en anglais, Giant Magnetoresistance Effect ou GMR) est un effet quantique observé dans les structures de films minces composées d'une alternance de couches ferromagnétiques et de couches non magnétiques communément appelées multicouches. Elle se manifeste sous forme d'une baisse significative de la résistance observée sous l'application d'un champ magnétique externe. Dans la découverte initiale, les deux couches ferromagnétiques adjacentes ont en l'absence de champ magnétique appliqué une aimantation antiparallèle qui résulte d'un couplage antiferromagnétique.
Imagerie par résonance magnétiqueL'imagerie par résonance magnétique (IRM) est une technique d' permettant d'obtenir des vues en deux ou en trois dimensions de l'intérieur du corps de façon non invasive avec une résolution en contraste relativement élevée. L'IRM repose sur le principe de la résonance magnétique nucléaire (RMN) qui utilise les propriétés quantiques des noyaux atomiques pour la spectroscopie en analyse chimique. L'IRM nécessite un champ magnétique puissant et stable produit par un aimant supraconducteur qui crée une magnétisation des tissus par alignement des moments magnétiques de spin.
Seebeck coefficientThe Seebeck coefficient (also known as thermopower, thermoelectric power, and thermoelectric sensitivity) of a material is a measure of the magnitude of an induced thermoelectric voltage in response to a temperature difference across that material, as induced by the Seebeck effect. The SI unit of the Seebeck coefficient is volts per kelvin (V/K), although it is more often given in microvolts per kelvin (μV/K). The use of materials with a high Seebeck coefficient is one of many important factors for the efficient behaviour of thermoelectric generators and thermoelectric coolers.
Température de CurieLa température de Curie (ou point de Curie) d'un matériau ferromagnétique ou ferrimagnétique est la température T à laquelle le matériau perd son aimantation permanente. Le matériau devient alors paramagnétique. Ce phénomène a été découvert par le physicien français Pierre Curie en 1895. L’aimantation permanente est causée par l’alignement des moments magnétiques. La susceptibilité magnétique au-dessus de la température de Curie peut alors être calculée à partir de la loi de Curie-Weiss, qui dérive de la loi de Curie.
Effet Overhauser nucléaireEn spectroscopie RMN, l'effet Overhauser nucléaire décrit une interaction entre deux spins à travers l'espace et non pas à travers les liaisons chimiques comme le couplage scalaire. Cette interaction est limitée à environ 5-6 Å. En anglais, cet effet s'appelle "Nuclear Overhauser Effect", soit NOE. Cet acronyme est souvent utilisé en français sous l'expression "effet NOE". Une des conséquences de la résonance magnétique nucléaire est l'interaction dipôle-dipôle à travers l'espace.
Onde de spinIn condensed matter physics, a spin wave is a propagating disturbance in the ordering of a magnetic material. These low-lying collective excitations occur in magnetic lattices with continuous symmetry. From the equivalent quasiparticle point of view, spin waves are known as magnons, which are bosonic modes of the spin lattice that correspond roughly to the phonon excitations of the nuclear lattice. As temperature is increased, the thermal excitation of spin waves reduces a ferromagnet's spontaneous magnetization.
Rayonnement électromagnétiquethumb|Répartition du rayonnement électromagnétique par longueur d'onde. Le rayonnement électromagnétique est une forme de transfert d'énergie linéaire. La lumière visible est un rayonnement électromagnétique, mais ne constitue qu'une petite tranche du large spectre électromagnétique. La propagation de ce rayonnement, d'une ou plusieurs particules, donne lieu à de nombreux phénomènes comme l'atténuation, l'absorption, la diffraction et la réfraction, le décalage vers le rouge, les interférences, les échos, les parasites électromagnétiques et les effets biologiques.
Thermodynamique hors équilibreLa thermodynamique hors équilibre est le domaine de recherche étudiant les phénomènes de relaxation et de transport au voisinage de l'équilibre thermodynamique. Il s'agit là de phénomènes dissipatifs donc irréversibles, liés à une augmentation de l'entropie. Les méthodes présentées ici relèvent de la thermodynamique proprement dite, qui permet de donner les lois caractérisant un phénomène.
Champ coercitifEn science des matériaux, le champ coercitif d'un matériau ferromagnétique désigne l'intensité du champ magnétique qu'il est nécessaire d'appliquer à un matériau ayant initialement atteint son aimantation à saturation, pour annuler l'aimantation du matériau. Le champ coercitif est usuellement noté ou . Lorsque le champ coercitif d'un ferromagnétique est très élevé, le matériau est qualifié de dur.
Spin–spin relaxationIn physics, the spin–spin relaxation is the mechanism by which Mxy, the transverse component of the magnetization vector, exponentially decays towards its equilibrium value in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). It is characterized by the spin–spin relaxation time, known as T2, a time constant characterizing the signal decay. It is named in contrast to T1, the spin–lattice relaxation time.