We initiate the study of certain families of L-functions attached to characters of subgroups of higher-rank tori, and of their average at the central point. In particular, we evaluate the average of the values L( 2 1 , chi a )L( 21 , chi b ) for arbitrary ...
In this paper we use the Riemann zeta distribution to give a new proof of the Erdos-Kac Central Limit Theorem. That is, if zeta(s) = Sigma(n >= 1) (1)(s)(n) , s > 1, then we consider the random variable X-s with P(X-s = n) = (1) (zeta) ( ...
Probabilistic arguments about the existence of technological life beyond Earth traditionally refer to the Drake equation to draw possible estimates of the number of technologically advanced civilizations releasing, either intentionally or not, electromagne ...
We prove that the coefficients of a GL3 x GL2 Rankin-Selberg L-function do not correlate with a wide class of trace functions of small conductor modulo primes, generalizing the corresponding result of Fouvry, Kowalski, and Michel for GL2 and of Kowalski, L ...
We consider fundamental algorithmic number theoretic problems and their relation to a class of block structured Integer Linear Programs (ILPs) called 2-stage stochastic. A 2-stage stochastic ILP is an integer program of the form min{c(T)x vertical bar Ax = ...
In order to describe magnetogenesis during inflation in the kinetic coupling model, we utilize a gradient expansion which is based on the fact that only long-wavelength (superhorizon) modes undergo amplification. For this purpose, we introduce a set of fun ...
We use the theory of foliations to study the relative canonical divisor of a normalized inseparable base-change. Our main technical theorem states that it is linearly equivalent to a divisor with positive integer coefficients divisible by p - 1. We deduce ...
Logic resynthesis is the problem of finding a dependency function to re-express a given Boolean function in terms of a given set of divisor functions. In this paper, we study logic resynthesis of majority-based circuits, which is motivated by the increasin ...
Given n continuous open curves in the plane, we say that a pair is touching if they have finitely many interior points in common and at these points the first curve does not get from one side of the second curve to its other side. Otherwise, if the two cur ...
We define and study in terms of integral Iwahoriâ Hecke algebras a new class of geometric operators acting on the Bruhat-Tits building of connected reductive groups over p-adic fields. These operators, which we call U-operators, generalize the geometric n ...