Effet stériquethumb|L'effet stérique d'une molécule de tri-(tert-butyl)amine rend les réactions électrophiles, comme la formation ici de cations de tetraalkylammonium, difficiles. Il est difficile pour les électrophiles de se rapprocher et d'attaquer les doublets non liants de la molécule d'azote (ici en bleu). L'effet stérique est l'ensemble des attractions et répulsions entre atomes d'une molécule liées au chevauchement des nuages des lobes orbitaux électroniques (répulsion de Pauli ou de Born) qui affecte la forme normale de la molécule ainsi que ses propriétés lors d'une réaction chimique.
AcideUn acide est un composé chimique minéral ou organique accepteur, au sens large, de doublets électroniques. Il est généralement défini par des réactions-types dans différents solvants, en particulier en libérant l'ion hydronium dans l'eau. Les acides réagissent souvent en dégageant de l'énergie avec d'autres composés chimiques appelés bases (les alcalis des Anciens), qui, elles, donnent des doublets électroniques et ont le pouvoir de générer, en tout ou partie, l'ion hydroxyle dans l'eau.
Acide propanoïqueL'acide propanoïque ou acide propionique (venant du grec pion voulant dire « gras ») est un acide carboxylique saturé à 3 atomes de carbone à utilisation médicale ou en arôme parfumant. Cet acide a été découvert par Johann Gottlieb en 1844 dans les produits de dégradation du sucre. Peu de temps après il a été synthétisé par d'autres voies par des chimistes qui n'ont pas fait tout de suite le lien.
Catalyse hétérogènevignette|droite|Catalyseur monolytique utilisé pour l'oxydation de CO en En chimie, on parle de la catalyse hétérogène lorsque le catalyseur et les réactifs sont dans plusieurs phases. Généralement, le catalyseur est solide et les réactifs sont gazeux ou en solution aqueuse. La catalyse hétérogène est d'une importance primordiale dans de nombreux domaines de l'industrie chimique et le secteur de l'énergie. L'importance de la catalyse hétérogène est mise en évidence via les Prix Nobel pour Fritz Haber en 1918, Carl Bosch en 1931, Irving Langmuir en 1932 et Gerhard Ertl en 2007.
Couplage de SonogashiraLe couplage de Sonogashira est une réaction de couplage direct entre un halogénure d'aryle et un alcyne terminal, catalysée par un complexe de palladium et un sel de cuivre(I) en tant que co-catalyseur. Cette réaction a été publiée par Kenkichi Sonogashira et Nobue Hagihara en 1975. Solvant de type amine. vignette|droite|450px|Mécanisme réactionnel A-B : Addition oxydante B-C (couplé avec F-G) : Transmetallation de l'alcyne du cuivre au complexe de palladium C-D : Réorganisation des ligands du palladium D-A : Elimination réductrice De plus, le couplage de Sonogashira comprend un co-cycle E-F-G qui permet in fine la transmétallation de l'alcyne sur le palladium.
Métathèse des alcènesLa métathèse des alcènes ou métathèse des oléfines ou encore transalkylidénation est une réaction organique qui implique la redistribution de fragment alkylidène par scission d'une liaison double carbone-carbone dans les alcènes. Depuis sa découverte, la métathèse des alcènes est largement utilisée dans l'industrie et la recherche pour la fabrication entre autres de médicaments ou de polymères. Elle compte comme avantage la très faible production de sous-produits et de déchets dangereux.