Raisonnement automatisévignette|Visualisation commune du réseau de neurones artificiels avec puce NOTOC Le raisonnement automatisé est un domaine de l'informatique consacré à la compréhension des différents aspects du raisonnement de manière à permettre la création de logiciels qui permettraient aux ordinateurs de « raisonner » de manière automatique, ou presque. Il est considéré habituellement comme un sous-domaine de l'intelligence artificielle, mais possède aussi de fortes connexions avec l'Informatique théorique et même avec la philosophie.
Induction (logique)L'induction est historiquement le nom utilisé pour signifier un genre de raisonnement qui se propose de chercher des lois générales à partir de l'observation de faits particuliers, sur une base probabiliste. Remarque : Bien qu'associée dans le titre de cet article à la logique, la présentation qui suit correspond surtout à la notion bayésienne, utilisée consciemment ou non, de l'induction.
Inférence (logique)L’inférence est un mouvement de la pensée qui permet de passer d'une ou plusieurs assertions, des énoncés ou propositions affirmés comme vrais, appelés prémisses, à une nouvelle assertion qui en est la conclusion. Étymologiquement, le mot inférence signifie « reporter ». En théorie, l'inférence est traditionnellement divisée en déduction et induction, une distinction qui, en Europe, remonte au moins à Aristote ( avant Jésus-Christ). On distingue les inférences immédiates des inférences médiates telles que déductives, inductives et abductives.
Commonsense reasoningIn artificial intelligence (AI), commonsense reasoning is a human-like ability to make presumptions about the type and essence of ordinary situations humans encounter every day. These assumptions include judgments about the nature of physical objects, taxonomic properties, and peoples' intentions. A device that exhibits commonsense reasoning might be capable of drawing conclusions that are similar to humans' folk psychology (humans' innate ability to reason about people's behavior and intentions) and naive physics (humans' natural understanding of the physical world).
Abduction (logique)L'abduction (du latin « abductio » : emmener) est un type de raisonnement consistant à inférer des causes probables à un fait observé. Autrement dit, il s'agit d'établir une cause la plus vraisemblable à un fait constaté et d'affirmer, à titre d'hypothèse de travail, que le fait en question résulte probablement de cette cause. Par exemple, en médecine, l’abduction est utilisée pour faire des diagnostics.
Neural networkA neural network can refer to a neural circuit of biological neurons (sometimes also called a biological neural network), a network of artificial neurons or nodes in the case of an artificial neural network. Artificial neural networks are used for solving artificial intelligence (AI) problems; they model connections of biological neurons as weights between nodes. A positive weight reflects an excitatory connection, while negative values mean inhibitory connections. All inputs are modified by a weight and summed.
Raisonnement révisableLe raisonnement révisable est un type de raisonnement qui est basé sur des raisons qui sont révisables, elle est opposé à la raison irévisable de la logique déductive. Le raisonnement révisable est un type particulier de raisonnement non-démonstratif, où le raisonnement ne produit pas une démonstration complète, ou finale d'une déclaration, c'est-à-dire, où la faillibilité et la corrigibilité de conclusion sont reconnus. En d'autres mots, le raisonnement révisable produit une déclaration contingente.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Knowledge representation and reasoningKnowledge representation and reasoning (KRR, KR&R, KR2) is the field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can use to solve complex tasks such as diagnosing a medical condition or having a dialog in a natural language. Knowledge representation incorporates findings from psychology about how humans solve problems and represent knowledge in order to design formalisms that will make complex systems easier to design and build.
Types of artificial neural networksThere are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.