Fourier analysisIn mathematics, Fourier analysis (ˈfʊrieɪ,_-iər) is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics.
Parafoudrethumb|upright=.5|Parafoudre à varistance sur ligne de transmission . Selon le vocabulaire électrotechnique international, un parafoudre est un . On emploie aussi le terme parasurtenseur. La fonction du parafoudre est différente de celle d'un paratonnerre : alors qu'un paratonnerre a pour rôle de protéger une structure contre les coups directs de la foudre, le parafoudre (ou parasurtenseur) protège les installations électriques et de télécommunications contre les surtensions en général qui peuvent avoir pour origine la foudre ou la manœuvre d'appareils électriques (surtensions dites de manœuvre).
GyratorA gyrator is a passive, linear, lossless, two-port electrical network element proposed in 1948 by Bernard D. H. Tellegen as a hypothetical fifth linear element after the resistor, capacitor, inductor and ideal transformer. Unlike the four conventional elements, the gyrator is non-reciprocal. Gyrators permit network realizations of two-(or-more)-port devices which cannot be realized with just the conventional four elements. In particular, gyrators make possible network realizations of isolators and circulators.
Fourier transform on finite groupsIn mathematics, the Fourier transform on finite groups is a generalization of the discrete Fourier transform from cyclic to arbitrary finite groups. The Fourier transform of a function at a representation of is For each representation of , is a matrix, where is the degree of . The inverse Fourier transform at an element of is given by The convolution of two functions is defined as The Fourier transform of a convolution at any representation of is given by For functions , the Plancherel formula states where are the irreducible representations of .
Domaine fréquentielLe domaine fréquentiel se rapporte à l'analyse de fonctions mathématiques ou de signaux physiques manifestant une fréquence. Alors qu'un graphe dans le domaine temporel présentera les variations dans l'allure d'un signal au cours du temps, un graphe dans le domaine fréquentiel montrera quelle proportion du signal appartient à telle ou telle bande de fréquence, parmi plusieurs bancs. Une représentation dans le domaine fréquentiel peut également inclure des informations sur le décalage de phase qui doit être appliqué à chaque sinusoïde afin de reconstruire le signal en domaine temporel.
Transformation de HilbertEn mathématiques et en traitement du signal, la transformation de Hilbert, ici notée , d'une fonction de la variable réelle est une transformation linéaire qui permet d'étendre un signal réel dans le domaine complexe, de sorte qu'il vérifie les équations de Cauchy-Riemann. La transformation de Hilbert tient son nom en honneur du mathématicien David Hilbert, mais fut principalement développée par le mathématicien anglais G. H. Hardy.
Condensateur de découplageUn condensateur de découplage est un condensateur destiné à réduire le couplage entre signal et alimentation. Le condensateur relie le canal d'alimentation à la masse pour abaisser son impédance dans la bande passante du signal. On n'a pas besoin d'une grande précision sur la valeur du composant. Celle-ci dépend de l'intensité qui traverse le canal et de la fréquence du signal. Le module de l'impédance d'un condensateur de capacité est de la forme (avec ).
QuadripôleEn électrocinétique, un quadripôle (ou quadrupôle) est un élément de modèle d'un circuit électrique dans lequel on le considère comme un bloc avec deux connexions d'entrée et deux de sortie. On étudie le transfert des grandeurs électriques, tension et courant, entre ces deux dipôles caractérisés par une impédance, en fonction du temps. Quand l'étude du quadripôle concerne un signal électrique, la grandeur en entrée et en sortie peut être différente (tension, courant).
Transformation de LaplaceEn mathématiques, la transformation de Laplace est une transformation intégrale qui à une fonction f — définie sur les réels positifs et à valeurs réelles — associe une nouvelle fonction F — définie sur les complexes et à valeurs complexes — dite transformée de Laplace de f. L'intérêt de la transformation de Laplace vient de la conjonction des deux faits suivants : De nombreuses opérations courantes sur la fonction originale f se traduisent par une opération algébrique sur la transformée F.
Domaine temporelLe domaine temporel se rapporte à l'analyse de fonctions mathématiques ou de signaux physiques modélisant une variation quelconque au cours du temps. En domaine temporel, la valeur de la fonction ou du signal est connue, soit en quelques points discrets de la durée d'analyse, ou éventuellement, pour tous les nombres réels. L'oscilloscope est parmi les outils usuels permettant de visualiser les signaux physiques du domaine temporel. Domaine fréquentiel Temps (physique) Catégorie:Analyse du signal Catégorie: