Microscopie à super-résolutionLa microscopie à super-résolution est un ensemble de techniques permettant d'imager en microscopie optique des objets à une résolution à l’échelle nanométrique. Elle se démarque par le fait que la résolution obtenue n'est plus limitée par le phénomène de diffraction. Du fait de la diffraction de la lumière, la résolution d’un microscope optique conventionnel est en principe limitée, indépendamment du capteur utilisé et des aberrations ou imperfections des lentilles.
Densité électroniqueright|thumb|300px|Carte de densité électronique dans le plan [1-10] du diamant. En mécanique quantique, et en particulier en chimie quantique, la densité électronique correspondant à une fonction d'onde N-électronique est la fonction monoélectronique donnée par : Dans le cas où est un déterminant de Slater constitué de N orbitales de spin : La densité électronique à deux électrons est donnée par : Ces quantités sont particulièrement importantes dans le contexte de la théorie de la fonctionnelle de la densité : Les coordonnées x utilisées ici sont les coordonnées spin-spatiales.
Super-résolutionEn traitement du signal et en , la super-résolution désigne le processus qui consiste à améliorer la résolution spatiale, c'est-à-dire le niveau de détail, d'une image ou d'un système d'acquisition. Cela regroupe des méthodes matérielles qui visent à contourner les problèmes optiques et autres difficultés physiques rencontrées lors de l'acquisition d'image, ainsi que des techniques algorithmiques qui, à partir d'une ou de plusieurs images déjà capturées, créent une image de meilleure résolution.
Matrice laplacienneEn théorie des graphes, une matrice laplacienne, ou matrice de Laplace, est une matrice représentant un graphe. La matrice laplacienne d'un graphe G non orienté et non réflexif est définie par : où est la matrice des degrés de G et la matrice d'adjacence de G. Formellement : A la différence de la matrice d'adjacence d'un graphe, la matrice laplacienne a une interprétation algébrique ce qui rend son analyse spectrale fructueuse. Plus précisément la matrice correspond à l'opérateur de diffusion sur le graphe.