Forme volumeEn géométrie différentielle, une forme volume généralise la notion de déterminant aux variétés différentielles. Elle définit une mesure sur la variété, permet le calcul des volumes généralisés, et la définition générale des orientations. Une forme volume se définit comme une forme différentielle de degré maximal, nulle en aucun point. Pour qu'une variété admette une forme volume, il faut et il suffit qu'elle soit orientable. Dans ce cas, il en existe une infinité.
Identités vectoriellesDans cet article, on note pour le produit vectoriel et · pour le produit scalaire. Les identités suivantes peuvent être utiles en analyse vectorielle. (Identité de Binet-Cauchy) Dans cette section, a, b, c et d représentent des vecteurs quelconques de . Dans cet article, les conventions suivantes sont utilisées; à noter que la position (levée ou abaissée) des indices n'a pas, ici, beaucoup d'importance étant donné que l'on travaille dans un contexte euclidien.
Forme sonateEn musique classique, la forme sonate est une forme musicale qui est composée de trois parties : l'exposition, le développement et la réexposition (ou récapitulation). La forme sonate est le plus souvent fondée sur deux thèmes musicaux, utilisés lors de l'exposition et la récapitulation, et souvent combinés ou se répondant lors du développement. Attention à ne pas confondre la forme sonate et la sonate. Généralement, le premier mouvement d'une sonate - mais aussi d'une symphonie, d'un concerto - est de forme sonate.
Analyse vectorielleL'analyse vectorielle est une branche des mathématiques qui étudie les champs de scalaires et de vecteurs suffisamment réguliers des espaces euclidiens, c'est-à-dire les applications différentiables d'un ouvert d'un espace euclidien à valeurs respectivement dans et dans . Du point de vue du mathématicien, l'analyse vectorielle est donc une branche de la géométrie différentielle. Cette dernière inclut l'analyse tensorielle qui apporte des outils plus puissants et une analyse plus concise entre autres des champs de vecteurs.
Forme bilinéaireEn mathématiques, plus précisément en algèbre linéaire, une forme bilinéaire est une application qui à un couple de vecteurs associe un scalaire, et qui a la particularité d'être linéaire en ses deux arguments. Autrement dit, étant donné un espace vectoriel V sur un corps commutatif K, il s'agit d'une application f : V × V → K telle que, pour tous et tous , Les formes bilinéaires sont naturellement introduites pour les produits scalaires.
Forme différentielle de degré unEn géométrie différentielle, les formes différentielles de degré un, ou 1-formes (différentielles), sont les exemples les plus simples de formes différentielles. Une 1-forme différentielle sur un ouvert d'un espace vectoriel normé est un champ de formes linéaires c'est-à-dire une application, qui, à chaque point de l'espace, fait correspondre une forme linéaire. Plus généralement, on peut définir de telles formes linéaires sur une variété différentielle.
Théorème de Helmholtz-HodgeEn mathématiques et en physique, dans le domaine de l’analyse vectorielle, le théorème de Helmholtz-Hodge, également appelé théorème fondamental du calcul vectoriel, assure qu'un champ vectoriel se décompose en une composante « longitudinale » (irrotationnelle) et une composante « transverse » (solénoïdale), soit la somme du gradient d’un champ scalaire et du rotationnel d’un champ vectoriel. Ce résultat possède des applications importantes en électromagnétisme et en mécanique des fluides ; il est également exploité en sismologie.
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Volume elementIn mathematics, a volume element provides a means for integrating a function with respect to volume in various coordinate systems such as spherical coordinates and cylindrical coordinates. Thus a volume element is an expression of the form where the are the coordinates, so that the volume of any set can be computed by For example, in spherical coordinates , and so . The notion of a volume element is not limited to three dimensions: in two dimensions it is often known as the area element, and in this setting it is useful for doing surface integrals.
VolumeLe volume, en sciences physiques ou mathématiques, est une grandeur qui mesure l'extension d'un objet ou d'une partie de l'espace. En physique : le volume d'un objet ou d'une figure géométrique tridimensionnelle et fermée mesure l'extension dans l'espace physique qu'il ou elle possède dans les trois directions en même temps, de même que l'aire d'une figure dans le plan mesure l'extension qu'elle possède dans les deux directions en même temps ; par extension, on étend la notion de volume à des espaces abstraits, dont les coordonnées peuvent avoir une ou des dimensions autres que celle d'une longueur.