Systems-on-Chips (SoCs) integrate more and more heterogeneous components: analog/RF/digital circuits, sensors, actuators, software. For the design of these systems very different description formalisms, or Models of Computation (MoCs), and tools are used for the different subblocks and design stages, which often create interoperability problems. Additionally the verification of a complete SoC is difficult due to huge performance problems. The goal of this Ph.D. work is to develop an efficient modeling and simulation platform that supports the design of mixed-signal SoCs using component models written in different design languages and using different MoCs. One component of this work is the development of a web-based platform for collecting behavioral models and supporting the design of Analog and Mixed-Signal (AMS) SoCs. Its current state and an outlook on its further development is the focus of this paper.
Nicola Marzari, Giovanni Pizzi, Sara Bonella, Kristjan Eimre, Andrius Merkys, Casper Welzel Andersen, Gian-Marco Rignanese, Ji Qi
Pedro Miguel Nunes Pereira de Almeida Reis, Tian Chen, Arefeh Abbasi, Bastien Freddy Gustave Aymon
Denis Gillet, Maria Jesus Rodriguez Triana, Juan Carlos Farah, Sandy Ingram, Fanny Kim-Lan Lasne, Adrian Christian Holzer