Dynamique des systèmesLa dynamique des systèmes fait partie de la théorie des systèmes. C'est une approche pour comprendre le comportement des systèmes complexes dans le temps en les représentant par des systèmes dynamiques. Elle prend en compte les boucles de rétroaction internes et les effets retard qui affectent le comportement global du système. Elle est fondée sur des modèles qui sont une formalisation de nos suppositions à propos d’un système (Hall and Day, 1977).
Théorie des systèmes dynamiquesLa théorie des systèmes dynamiques désigne couramment la branche des mathématiques qui s'efforce d'étudier les propriétés d'un système dynamique. Cette recherche active se développe à la frontière de la topologie, de l'analyse, de la géométrie, de la théorie de la mesure et des probabilités. La nature de cette étude est conditionnée par le système dynamique étudié et elle dépend des outils utilisés (analytiques, géométriques ou probabilistes).
Trajectoire paraboliquethumb|La ligne verte représente une trajectoire parabolique. En mécanique céleste et en mécanique spatiale, une trajectoire parabolique (ou orbite parabolique) est une orbite de Kepler dont l'excentricité est égale à 1. L'objet en orbite décrit alors, sur le plan de l'orbite, une parabole dont le foyer est l'objet plus massif. Le mouvement parabolique s'effectue lorsqu'un projectile est soumis à une vitesse initiale et à la seule accélération de la pesanteur. Un exemple courant de mouvement parabolique est l'obus tiré depuis un canon.
Systems modelingSystems modeling or system modeling is the interdisciplinary study of the use of models to conceptualize and construct systems in business and IT development. A common type of systems modeling is function modeling, with specific techniques such as the Functional Flow Block Diagram and IDEF0. These models can be extended using functional decomposition, and can be linked to requirements models for further systems partition.
Asymptotic analysisIn mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior. As an illustration, suppose that we are interested in the properties of a function f (n) as n becomes very large. If f(n) = n2 + 3n, then as n becomes very large, the term 3n becomes insignificant compared to n2. The function f(n) is said to be "asymptotically equivalent to n2, as n → ∞". This is often written symbolically as f (n) ~ n2, which is read as "f(n) is asymptotic to n2".
Trajectoire hyperboliquevignette|La ligne bleue représente une trajectoire hyperbolique. Une trajectoire hyperbolique (ou, abusivement, orbite hyperbolique) est, en mécanique spatiale, la trajectoire de tout objet autour du corps central avec une vitesse suffisante pour échapper à l'attraction gravitationnelle de celui-ci. Le nom dérive du fait que, selon la loi universelle de la gravitation, une telle orbite a la forme d'une hyperbole. En termes plus techniques, cela peut être exprimé par une excentricité orbitale supérieure à 1.
Liberté asymptotiqueEn théorie quantique des champs, la liberté asymptotique est la propriété que possèdent certaines théories basées sur un groupe de jauge non abélien de voir leur constante de couplage décroître lorsque les distances deviennent petites (par rapport à l'échelle de la théorie) ou réciproquement lorsque les énergies mises en jeu deviennent importantes par rapport à une certaine échelle caractéristique . Le premier exemple de théorie asymptotiquement libre est celui de la chromodynamique quantique (ou en abrégé QCD) servant à décrire les quarks ainsi que leurs interactions, qui est appelée l'interaction forte.
Radial trajectoryIn astrodynamics and celestial mechanics a radial trajectory is a Kepler orbit with zero angular momentum. Two objects in a radial trajectory move directly towards or away from each other in a straight line. There are three types of radial trajectories (orbits). Radial elliptic trajectory: an orbit corresponding to the part of a degenerate ellipse from the moment the bodies touch each other and move away from each other until they touch each other again. The relative speed of the two objects is less than the escape velocity.
Asymptotic computational complexityIn computational complexity theory, asymptotic computational complexity is the usage of asymptotic analysis for the estimation of computational complexity of algorithms and computational problems, commonly associated with the usage of the big O notation. With respect to computational resources, asymptotic time complexity and asymptotic space complexity are commonly estimated. Other asymptotically estimated behavior include circuit complexity and various measures of parallel computation, such as the number of (parallel) processors.
Asymptotic safety in quantum gravityAsymptotic safety (sometimes also referred to as nonperturbative renormalizability) is a concept in quantum field theory which aims at finding a consistent and predictive quantum theory of the gravitational field. Its key ingredient is a nontrivial fixed point of the theory's renormalization group flow which controls the behavior of the coupling constants in the ultraviolet (UV) regime and renders physical quantities safe from divergences.