Optimisation de codeEn programmation informatique, l'optimisation de code est la pratique consistant à améliorer l'efficacité du code informatique d'un programme ou d'une bibliothèque logicielle. Ces améliorations permettent généralement au programme résultant de s'exécuter plus rapidement, de prendre moins de place en mémoire, de limiter sa consommation de ressources (par exemple les fichiers), ou de consommer moins d'énergie électrique. La règle numéro un de l'optimisation est qu'elle ne doit intervenir qu'une fois que le programme fonctionne et répond aux spécifications fonctionnelles.
Circuit en boucle ouverteEn régulation, un système en boucle ouverte ou contrôle ouvert est une forme de contrôle d'un système qui ne prend pas en compte la réponse de ce système (appelée rétroaction, en anglais : feedback). Ce contrôle, simple en principe, est à utiliser avec précaution si le système est naturellement instable. Pour le mettre en place il faut au préalable avoir parfaitement modélisé le système, que la commande soit parfaitement adaptée et qu'il n'y ait aucune perturbation.
Complexité paramétréeEn algorithmique, la complexité paramétrée (ou complexité paramétrique) est une branche de la théorie de la complexité qui classifie les problèmes algorithmiques selon leur difficulté intrinsèque en fonction de plusieurs paramètres sur les données en entrée ou sur la sortie. Ce domaine est étudié depuis les années 90 comme approche pour la résolution exacte de problèmes NP-complets. Cette approche est utilisée en optimisation combinatoire, notamment en algorithmique des graphes, en intelligence artificielle, en théorie des bases de données et en bio-informatique.
Programmation dynamiqueEn informatique, la programmation dynamique est une méthode algorithmique pour résoudre des problèmes d'optimisation. Le concept a été introduit au début des années 1950 par Richard Bellman. À l'époque, le terme « programmation » signifie planification et ordonnancement. La programmation dynamique consiste à résoudre un problème en le décomposant en sous-problèmes, puis à résoudre les sous-problèmes, des plus petits aux plus grands en stockant les résultats intermédiaires.
Échantillonnage (signal)L'échantillonnage consiste à prélever les valeurs d'un signal à intervalles définis, généralement réguliers. Il produit une suite de valeurs discrètes nommées échantillons. L'application la plus courante de l'échantillonnage est aujourd'hui la numérisation d'un signal variant dans le temps, mais son principe est ancien. Depuis plusieurs siècles, on surveille les mouvements lents en inscrivant, périodiquement, les valeurs relevées dans un registre : ainsi des hauteurs d'eau des marées ou des rivières, de la quantité de pluie.
Dualité (optimisation)En théorie de l'optimisation, la dualité ou principe de dualité désigne le principe selon lequel les problèmes d'optimisation peuvent être vus de deux perspectives, le problème primal ou le problème dual, et la solution du problème dual donne une borne inférieure à la solution du problème (de minimisation) primal. Cependant, en général les valeurs optimales des problèmes primal et dual ne sont pas forcément égales : cette différence est appelée saut de dualité. Pour les problèmes en optimisation convexe, ce saut est nul sous contraintes.
Structure de contrôleEn programmation informatique, une structure de contrôle est une instruction particulière d'un langage de programmation impératif pouvant dévier le flot de contrôle du programme la contenant lorsqu'elle est exécutée. Si, au plus bas niveau, l'éventail se limite généralement aux branchements et aux appels de sous-programme, les langages structurés offrent des constructions plus élaborées comme les alternatives (if, if–else, switch...), les boucles (while, do–while, for...) ou encore les appels de fonction.
Processus de décision markovienEn théorie de la décision et de la théorie des probabilités, un processus de décision markovien (en anglais Markov decision process, MDP) est un modèle stochastique où un agent prend des décisions et où les résultats de ses actions sont aléatoires. Les MDPs sont utilisés pour étudier des problèmes d'optimisation à l'aide d'algorithmes de programmation dynamique ou d'apprentissage par renforcement. Les MDPs sont connus depuis les années 1950. Une grande contribution provient du travail de Ronald A.
Tout ou rienEn automatique, le concept TOR (tout ou rien) se ramène au binaire : 0 ou 1. Cela signifie que l'information à traiter ne peut prendre que deux états (marche-arrêt). Seuls ces deux niveaux logiques sont possibles, d'où l'appellation commande tout ou rien (en anglais : bang–bang-control ou on–off-control). On trouve par exemple des capteurs de type TOR (tout ou rien, en anglais : digital sensor) dans l'industrie pour la détection de présence d'objets, ces capteurs ne renverront que deux niveaux logiques : 0 = absence d'objet 1 = présence d'objet Un interrupteur électrique, un thermostat constituent des dispositifs tout ou rien.
Boucle de courantvignette|La régulation a évolué de l'ère pneumatique (3-) à l'ère électronique (4-). vignette|Exemple de régulation utilisant des boucles de courant 4-20 mA pour transmettre des signaux de mesure (depuis un débitmètre) et de commande (vers un positionneur de vanne automatique). vignette|redresse|Vanne automatique équipée d'un positionneur 4- dont l'écran indique , soit une course (travel) d'environ 31 %.