Résumé
In control theory, an open-loop controller, also called a non-feedback controller, is a control loop part of a control system in which the control action is independent of the "process output", which is the process variable that is being controlled. It does not use feedback to determine if its output has achieved the desired goal of the input command or process setpoint. There are many open-loop controls, such as on/off switching of valves, machinery, lights, motors or heaters, where the control result is known to be approximately sufficient under normal conditions without the need for feedback. The advantage of using open-loop control in these cases is the reduction in component count and complexity. However, an open-loop system cannot correct any errors that it makes or correct for outside disturbances, and cannot engage in machine learning, unlike a closed-loop control system. An open-loop controller is often used in simple processes because of its simplicity and low cost, especially in systems where feedback is not critical. A typical example would be an older model domestic clothes dryer, for which the length of time is entirely dependent on the judgement of the human operator, with no automatic feedback of the dryness of the clothes. For example, an irrigation sprinkler system, programmed to turn on at set times could be an example of an open-loop system if it does not measure soil moisture as a form of feedback. Even if rain is pouring down on the lawn, the sprinkler system would activate on schedule, wasting water. Another example is a stepper motor used for control of position. Sending it a stream of electrical pulses causes it to rotate by exactly that many steps, hence the name. If the motor was always assumed to perform each movement correctly, without positional feedback, it would be open-loop control. However, if there is a position encoder, or sensors to indicate the start or finish positions, then that is closed-loop control, such as in many inkjet printers.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.