Statistical model validationIn statistics, model validation is the task of evaluating whether a chosen statistical model is appropriate or not. Oftentimes in statistical inference, inferences from models that appear to fit their data may be flukes, resulting in a misunderstanding by researchers of the actual relevance of their model. To combat this, model validation is used to test whether a statistical model can hold up to permutations in the data.
Postulats de la mécanique quantiquevignette|Participants au Congrès Solvay de 1927 sur la mécanique quantique Cet article traite des postulats de la mécanique quantique. La description du monde microscopique que fournit la mécanique quantique s'appuie sur une vision radicalement nouvelle, et s'oppose en cela à la mécanique classique. Elle repose sur des postulats. S'il existe un très large consensus entre les physiciens sur la manière de réaliser les calculs qui permettent de rendre compte des phénomènes quantiques et de prévoir leur évolution, il n'existe pas en revanche de consensus sur une manière unique de les expliquer aux étudiants.
Regression validationIn statistics, regression validation is the process of deciding whether the numerical results quantifying hypothesized relationships between variables, obtained from regression analysis, are acceptable as descriptions of the data. The validation process can involve analyzing the goodness of fit of the regression, analyzing whether the regression residuals are random, and checking whether the model's predictive performance deteriorates substantially when applied to data that were not used in model estimation.
Identification de systèmeL'identification de système ou identification paramétrique est une technique de l'automatique consistant à obtenir un modèle mathématique d'un système à partir de mesures. L'identification consiste à appliquer ou observer des signaux de perturbation à l'entrée d'un système (par exemple, pour un système électronique, ceux-ci peuvent être de type binaire aléatoire ou pseudo-aléatoire, galois, sinus à fréquences multiples...) et en analyser la sortie dans le but d'obtenir un modèle purement mathématique.
Asymptotic analysisIn mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior. As an illustration, suppose that we are interested in the properties of a function f (n) as n becomes very large. If f(n) = n2 + 3n, then as n becomes very large, the term 3n becomes insignificant compared to n2. The function f(n) is said to be "asymptotically equivalent to n2, as n → ∞". This is often written symbolically as f (n) ~ n2, which is read as "f(n) is asymptotic to n2".
Développement asymptotiqueEn mathématiques, un développement asymptotique d'une fonction f donnée dans un voisinage fixé est une somme finie de fonctions de référence qui donne une bonne approximation du comportement de la fonction f dans le voisinage considéré. Le concept de développement asymptotique a été introduit par Poincaré à propos de l'étude du problème à N corps de la mécanique céleste par la théorie des perturbations. La somme étant finie, la question de la convergence ne se pose pas.
Organisme modèleUn organisme modèle est une espèce qui est étudiée de manière approfondie pour comprendre un phénomène biologique particulier, en supposant que les résultats de ces expériences seront partiellement valables pour la connaissance d'autres organismes. Cela est possible parce que les principes biologiques fondamentaux comme les voies métaboliques, régulatoires, et développementales, et les gènes qui déterminent ces processus, sont proches de ceux observés dans des cellules humaines, qui sont souvent plus difficiles à manipuler.
Théorie du contrôleEn mathématiques et en sciences de l'ingénieur, la théorie du contrôle a comme objet l'étude du comportement de systèmes dynamiques paramétrés en fonction des trajectoires de leurs paramètres. On se place dans un ensemble, l'espace d'état sur lequel on définit une dynamique, c'est-à-dire une loi mathématiques caractérisant l'évolution de variables (dites variables d'état) au sein de cet ensemble. Le déroulement du temps est modélisé par un entier .
Expérience de Milgramthumb|Reconstitution de l'expérience de Milgram (extrait).thumb|200px|L’expérimentateur (E) amène le sujet (S) à infliger des chocs électriques à un autre participant, l’apprenant (A), qui est en fait un acteur. La majorité des participants continuent à infliger les prétendus chocs jusqu'au maximum prévu () en dépit des plaintes de l'acteur. L’expérience de Milgram est une expérience de psychologie publiée en 1963 par le psychologue américain Stanley Milgram.
Liberté asymptotiqueEn théorie quantique des champs, la liberté asymptotique est la propriété que possèdent certaines théories basées sur un groupe de jauge non abélien de voir leur constante de couplage décroître lorsque les distances deviennent petites (par rapport à l'échelle de la théorie) ou réciproquement lorsque les énergies mises en jeu deviennent importantes par rapport à une certaine échelle caractéristique . Le premier exemple de théorie asymptotiquement libre est celui de la chromodynamique quantique (ou en abrégé QCD) servant à décrire les quarks ainsi que leurs interactions, qui est appelée l'interaction forte.