Mécanique des fluides numériqueLa mécanique des fluides numérique (MFN), plus souvent désignée par le terme anglais computational fluid dynamics (CFD), consiste à étudier les mouvements d'un fluide, ou leurs effets, par la résolution numérique des équations régissant le fluide. En fonction des approximations choisies, qui sont en général le résultat d'un compromis en termes de besoins de représentation physique par rapport aux ressources de calcul ou de modélisation disponibles, les équations résolues peuvent être les équations d'Euler, les équations de Navier-Stokes, etc.
Compresseur centrifugeLe terme « compresseur centrifuge » (aussi appelé « compresseur radial ») désigne un type de turbomachines à circulation radiale et à absorption de travail qui comprend des ventilateurs (soufflantes et extracteurs), et des compresseurs. Les pompes centrifuges, qui sont aussi des turbomachines, désignent des machines faisant circuler des liquides, fluides quasi-incompressibles, et ne sont donc pas des compresseurs (qui eux compriment des gaz compressibles avec changement de volume du gaz).
Espace localement connexeEn mathématiques, plus précisément en topologie, un espace localement connexe est un espace topologique pouvant être décrit à l’aide de ses ouverts connexes. En topologie, on dit qu’un espace est connexe lorsqu’il est fait « d’une seule pièce ». La question naturelle qui suit est de savoir si tout espace topologique peut être décrit comme la réunion disjointe (dans la catégorie des espaces topologiques) de ses composantes connexes ; en d’autres termes, peut-on considérer que lorsqu’on connait toutes les « pièces » d’un espace topologique, on sait tout de cet espace ? Une condition nécessaire et suffisante pour cela est que toutes les composantes connexes soient ouvertes.
Connexité simpleEn topologie générale et en topologie algébrique, la notion de simple connexité raffine celle de connexe par arcs. Dans un espace connexe par arcs, deux points quelconques peuvent toujours être reliés par un chemin. Dans un espace simplement connexe, cela est toujours possible d'une et une seule façon, l'unicité étant à comprendre au sens de « à déformation (isotopie) près ». Intuitivement, là où un espace connexe est simplement « d'un seul tenant », un espace simplement connexe est de plus sans « trou » ni « poignée ».
RésolvanteIn mathematics, the resolvent formalism is a technique for applying concepts from complex analysis to the study of the spectrum of operators on Banach spaces and more general spaces. Formal justification for the manipulations can be found in the framework of holomorphic functional calculus. The resolvent captures the spectral properties of an operator in the analytic structure of the functional.
Intervalle (mathématiques)En mathématiques, un intervalle (du latin intervallum) est étymologiquement un ensemble ordonné de points compris entre deux bornes. Cette notion première s'est ensuite développée jusqu'à aboutir à la notion topologique de boule d'un espace métrique. Initialement, on appelle intervalle réel un ensemble de nombres délimité par deux nombres réels constituant une borne inférieure et une borne supérieure. Un intervalle contient tous les nombres réels compris entre ces deux bornes.
Domain (mathematical analysis)In mathematical analysis, a domain or region is a non-empty connected open set in a topological space, in particular any non-empty connected open subset of the real coordinate space Rn or the complex coordinate space Cn. A connected open subset of coordinate space is frequently used for the domain of a function, but in general, functions may be defined on sets that are not topological spaces.
Applications ouvertes et ferméesEn mathématiques, et plus précisément en topologie, une application ouverte est une application entre deux espaces topologiques envoyant les ouverts de l'un vers des ouverts de l'autre. De même, une application fermée envoie les fermés du premier espace vers des fermés du second. Soit deux espaces topologiques X et Y ; on dit qu'une application f de X vers Y est ouverte si pour tout ouvert U de X, l' f(U) est ouverte dans Y ; de même, on dit que f est fermée si pour tout fermé U de X, l'image f(U) est fermée dans Y.
Operator theoryIn mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operators or closed operators, and consideration may be given to nonlinear operators. The study, which depends heavily on the topology of function spaces, is a branch of functional analysis. If a collection of operators forms an algebra over a field, then it is an operator algebra.
Degré de TuringEn informatique et en logique mathématique, le degré de Turing (nommé d'après Alan Turing) ou le degré d'insolubilité d'un ensemble d'entiers naturels mesure le niveau d'insolubilité algorithmique de l'ensemble. Le concept de degré de Turing est fondamental dans la théorie de la calculabilité, où des ensembles d'entiers naturels sont souvent considérés comme des problèmes de décision. Le degré de Turing d'un ensemble révèle combien il est difficile de résoudre le problème de décision associé à cet ensemble, à savoir, déterminer si un nombre arbitraire est dans l'ensemble donné.