K-moyennesLe partitionnement en k-moyennes (ou k-means en anglais) est une méthode de partitionnement de données et un problème d'optimisation combinatoire. Étant donnés des points et un entier k, le problème est de diviser les points en k groupes, souvent appelés clusters, de façon à minimiser une certaine fonction. On considère la distance d'un point à la moyenne des points de son cluster ; la fonction à minimiser est la somme des carrés de ces distances.
Determining the number of clusters in a data setDetermining the number of clusters in a data set, a quantity often labelled k as in the k-means algorithm, is a frequent problem in data clustering, and is a distinct issue from the process of actually solving the clustering problem. For a certain class of clustering algorithms (in particular k-means, k-medoids and expectation–maximization algorithm), there is a parameter commonly referred to as k that specifies the number of clusters to detect.
Partitionnement de donnéesvignette|upright=1.2|Exemple de clustering hiérarchique. Le partitionnement de données (ou data clustering en anglais) est une méthode en analyse des données. Elle vise à diviser un ensemble de données en différents « paquets » homogènes, en ce sens que les données de chaque sous-ensemble partagent des caractéristiques communes, qui correspondent le plus souvent à des critères de proximité (similarité informatique) que l'on définit en introduisant des mesures et classes de distance entre objets.
Maximum de vraisemblanceEn statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Soient neuf tirages aléatoires x1, ..., x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés.
Fonction de vraisemblancevignette|Exemple d'une fonction de vraisemblance pour le paramètre d'une Loi de Poisson En théorie des probabilités et en statistique, la fonction de vraisemblance (ou plus simplement vraisemblance) est une fonction des paramètres d'un modèle statistique calculée à partir de données observées. Les fonctions de vraisemblance jouent un rôle clé dans l'inférence statistique fréquentiste, en particulier pour les méthodes statistiques d'estimation de paramètres.
Correlation clusteringClustering is the problem of partitioning data points into groups based on their similarity. Correlation clustering provides a method for clustering a set of objects into the optimum number of clusters without specifying that number in advance. Cluster analysis In machine learning, correlation clustering or cluster editing operates in a scenario where the relationships between the objects are known instead of the actual representations of the objects.
Classification doubleLa Classification double ou est une technique d'exploration de données non-supervisée permettant de segmenter simultanément les lignes et les colonnes d'une matrice. Plus formellement, la définition de la classification double peut s'exprimer de la manière suivante (pour le type de classification par colonne) : soit une matrice , soient , alors est appelé de lorsque pour tout Le a été utilisé massivement en biologie - par exemple dans l'analyse de l'expression génétique par Yizong Cheng et George M.
Mean shiftMean shift is a non-parametric feature-space mathematical analysis technique for locating the maxima of a density function, a so-called mode-seeking algorithm. Application domains include cluster analysis in computer vision and . The mean shift procedure is usually credited to work by Fukunaga and Hostetler in 1975. It is, however, reminiscent of earlier work by Schnell in 1964. Mean shift is a procedure for locating the maxima—the modes—of a density function given discrete data sampled from that function.
Amas stellaireUn amas stellaire est une concentration locale d'étoiles d'origine commune et liées entre elles par la gravitation, dans un espace dont les dimensions peuvent atteindre 200 pc. Ces objets sont classés en plusieurs familles selon leur aspect ; ce sont, par compacité croissante : les associations stellaires, les amas ouverts et les amas globulaires. Les amas stellaires se maintiennent par l'attraction gravitationnelle mutuelle de leurs membres.
Likelihood principleIn statistics, the likelihood principle is the proposition that, given a statistical model, all the evidence in a sample relevant to model parameters is contained in the likelihood function. A likelihood function arises from a probability density function considered as a function of its distributional parameterization argument.