This paper presents a robotic arm controller for reaching motions. This controller applies two principles inspired by current theories of human reaching motions, namely the multi-referential control of movements and the dynamical system approach to biological control. The controller consists of a stable dynamical system active in a hybrid cartesian-joint angle frame of reference. Our results show that this controller has interesting properties in terms of stability and robustness to perturbations, and that its redundancy can be exploited for a simple solution to the joint limit avoidance problem.
Jamie Paik, Mustafa Mete, Jian-Lin Huang
Aude Billard, Vaibhav Gupta, Diego Felipe Paez Granados