Hyperkähler manifoldIn differential geometry, a hyperkähler manifold is a Riemannian manifold endowed with three integrable almost complex structures that are Kähler with respect to the Riemannian metric and satisfy the quaternionic relations . In particular, it is a hypercomplex manifold. All hyperkähler manifolds are Ricci-flat and are thus Calabi–Yau manifolds. Hyperkähler manifolds were defined by Eugenio Calabi in 1979. Equivalently, a hyperkähler manifold is a Riemannian manifold of dimension whose holonomy group is contained in the compact symplectic group Sp(n).
GéodésiqueEn géométrie, une géodésique est la généralisation d'une ligne droite du plan ou de l'espace euclidien, au cadre des surfaces, ou plus généralement des variétés ou des espaces métriques. Elles sont étroitement liées à la notion de plus court chemin relativement à un calcul de distance sur un tel espace. Ainsi, le plus court chemin (ou les plus courts chemins, s'il en existe plusieurs), entre deux points est toujours une géodésique. Mais plus précisément, on appelle géodésique une courbe qui, à l'échelle locale, relie les points en minimisant la distance.
Variété kählérienneEn mathématiques, une variété kählérienne ou variété de Kähler est une variété différentielle équipée d'une structure unitaire satisfaisant une condition d'intégrabilité. C'est en particulier une variété riemannienne, une variété symplectique et une variété complexe, ces trois structures étant mutuellement compatibles. Les variétés kählériennes sont un objet d'étude naturel en géométrie différentielle complexe. Elles doivent leur nom au mathématicien Erich Kähler. Plusieurs définitions équivalentes existent.
Horizon des événementsL'horizon des événements est, en relativité restreinte et en relativité générale, constitué par la limite éventuelle de la région qui peut être influencée dans le futur par un observateur situé en un endroit donné à une époque donnée. Dans le cas d'un trou noir, en particulier, on peut définir son horizon des événements comme une surface qui l'entoure, d'où aucun objet, ni même un rayon de lumière ne peut jamais échapper au champ gravitationnel du trou noir.
Asymptotic analysisIn mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior. As an illustration, suppose that we are interested in the properties of a function f (n) as n becomes very large. If f(n) = n2 + 3n, then as n becomes very large, the term 3n becomes insignificant compared to n2. The function f(n) is said to be "asymptotically equivalent to n2, as n → ∞". This is often written symbolically as f (n) ~ n2, which is read as "f(n) is asymptotic to n2".
Horizon cosmologiqueEn cosmologie, l'horizon cosmologique est la limite de l'Univers observable depuis un point donné (en général la Terre). Il correspond à la limite d'où aucun signal, de quelque nature qu'il soit, ne peut être reçu du fait du caractère fini de la vitesse de la lumière et de l'expansion de l'Univers. Il est aussi connu, à la suite de Wolfgang Rindler, comme l'horizon des particules.
Analyse (mathématiques)L'analyse (du grec , délier, examiner en détail, résoudre) a pour point de départ la formulation rigoureuse du calcul infinitésimal. C'est la branche des mathématiques qui traite explicitement de la notion de limite, que ce soit la limite d'une suite ou la limite d'une fonction. Elle inclut également des notions comme la continuité, la dérivation et l'intégration. Ces notions sont étudiées dans le contexte des nombres réels ou des nombres complexes.
Horizon des particulesEn relativité restreinte et en relativité générale, l'horizon des particules à un instant donné est la limite dans l'Univers entre l'ensemble des particules qui ont été observables à un temps antérieur et celles qui ne l'ont pas été. Cet horizon est la limite de l'univers observable. L'horizon des particules est le pendant de l'horizon des évènements, qui détermine la limite éventuelle de la région qui peut être influencée dans le futur par un observateur situé en un endroit donné à une époque donnée. Univ
Conjugaison topologiqueEn mathématiques, et plus particulièrement dans la théorie des systèmes dynamiques, deux fonctions et sont dites topologiquement conjuguées (ou simplement conjuguées lorsqu'il n'y a pas de risque de confusion avec, par exemple, la conjugaison complexe) s'il existe un homéomorphisme tel que (où note la composition des fonctions). Deux fonctions conjuguées ont les mêmes propriétés dynamiques (par exemple le même nombre de points fixes), d'où l'importance de cette notion dans l'étude en particulier des suites définies par itération.
Geodesics on an ellipsoidThe study of geodesics on an ellipsoid arose in connection with geodesy specifically with the solution of triangulation networks. The figure of the Earth is well approximated by an oblate ellipsoid, a slightly flattened sphere. A geodesic is the shortest path between two points on a curved surface, analogous to a straight line on a plane surface. The solution of a triangulation network on an ellipsoid is therefore a set of exercises in spheroidal trigonometry .