Optimization problemIn mathematics, computer science and economics, an optimization problem is the problem of finding the best solution from all feasible solutions. Optimization problems can be divided into two categories, depending on whether the variables are continuous or discrete: An optimization problem with discrete variables is known as a discrete optimization, in which an object such as an integer, permutation or graph must be found from a countable set.
Relaxation continueEn informatique théorique et en recherche opérationnelle, la relaxation continue est une méthode qui consiste à interpréter de façon continue un problème combinatoire ou discret. Cette méthode est utilisée afin d'obtenir des informations sur le problème discret initial et parfois même pour obtenir sa solution. Les problèmes discrets ou combinatoires sont en effet très difficiles à traiter en raison de l'explosion combinatoire et il est courant de les traiter par une méthode de séparation et évaluation (branch and bound en anglais) : la relaxation continue fait partie des algorithmes d'évaluation nécessaire à la mise en œuvre de cette méthode.
Optimisation convexevignette|320x320px|Optimisation convexe dans un espace en deux dimensions dans un espace contraint L'optimisation convexe est une sous-discipline de l'optimisation mathématique, dans laquelle le critère à minimiser est convexe et l'ensemble admissible est convexe. Ces problèmes sont plus simples à analyser et à résoudre que les problèmes d'optimisation non convexes, bien qu'ils puissent être NP-difficile (c'est le cas de l'optimisation copositive). La théorie permettant d'analyser ces problèmes ne requiert pas la différentiabilité des fonctions.
Intelligence artificiellevignette|redresse=0.8|Les assistants personnels intelligents sont l'une des applications concrètes de l'intelligence artificielle dans les années 2010. L'intelligence artificielle (IA) est un ensemble de théories et de techniques visant à réaliser des machines capables de simuler l'intelligence humaine. Souvent classée dans le groupe des mathématiques et des sciences cognitives, elle fait appel à la neurobiologie computationnelle (particulièrement aux réseaux neuronaux) et à la logique mathématique (partie des mathématiques et de la philosophie).
Problème de couverture par ensemblesEn informatique théorique, le problème de couverture par ensembles (Set Cover problem en anglais) est un problème d'algorithmique particulièrement important car c'est l'un des 21 problèmes NP-complets de Karp . Étant donné un ensemble A, on dit qu'un élément e est couvert par A si e appartient à A. Étant donné un ensemble U et une famille S de sous-ensembles de U, le problème consiste à couvrir tous les éléments U avec une sous-famille de S la plus petite possible.
Théorie de la préférence révéléeLa Théorie de la préférence révélée est une théorie économique proposée par Paul Samuelson. Paul Samuelson a proposé de déduire les préférences des consommateurs en observant leurs choix. Plutôt que de les questionner sur leurs préférences en proposant plusieurs paniers de biens possibles afin d’obtenir des courbes d’indifférence, cette théorie se limite uniquement à l’observation du comportement des consommateurs. En faisant ses achats, le consommateur révèle ses préférences.
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Intelligence artificielle généralevignette|Image générée en juin 2022 par le modèle de génération d'images DALL-E-mini, à partir de la consigne « Intelligence artificielle ». Une intelligence artificielle générale (IAG) est une intelligence artificielle capable d'effectuer ou d'apprendre pratiquement n'importe quelle tâche cognitive propre aux humains ou autres animaux. La création d'intelligences artificielles générales est un des principaux objectifs de certaines entreprises comme OpenAI, DeepMind et Anthropic.
Preference (economics)In economics and other social sciences, preference refers to the order in which an agent ranks alternatives based on their relative utility. The process results in an "optimal choice" (whether real or theoretical). Preferences are evaluations and concern matter of value, typically in relation to practical reasoning. An individual's preferences are determined purely by a person's tastes as opposed to the good's prices, personal income, and the availability of goods. However, people are still expected to act in their best (rational) interest.
Applications de l'intelligence artificielleL'intelligence artificielle, définie comme intelligence présentée par les machines, a de nombreuses applications dans la société actuelle. Plus précisément, c'est l'IA faible, la forme d'IA avec laquelle les programmes sont développés pour effectuer des tâches spécifiques, qui est utilisée pour un large éventail d'activités, y compris le diagnostic médical, le commerce électronique, le contrôle des robots et la télédétection. L'IA a été utilisée pour développer et faire progresser de nombreux domaines et industries, y compris la finance, la santé, l'éducation, le transport, et plus encore.