IridiumL'iridium est l'élément chimique de numéro atomique 77, de symbole Ir. L'élément est considéré, du fait de son corps simple, comme un platinoïde, dans la famille des métaux de transition. gauche|vignette|Deux ampoules scellées, l'une en haut contenant le corps simple métal iridium (blanc argenté jaunâtre) et l'autre en bas l'osmium (gris bleuté). L'iridium a été découvert en 1803 par Smithson Tennant à Londres, Angleterre, en même temps que l'osmium dans les résidus (osmiure d'iridium) de la dissolution du platine et des minerais de platine dans de l'eau régale.
Groupe du platineLes métaux du groupe du platine dits MGP (ou PGM en anglais pour platinum group metals) regroupent six ou sept éléments chimiques appartenant à la famille des métaux de transition et apparentés dans le tableau périodique : ruthénium 44Ru, rhodium 45Rh, palladium 46Pd, osmium 76Os, iridium 77Ir, platine 78Pt, et, selon les sources, rhénium 75Re. Les métaux de ce groupe sont rares et caractérisés par des propriétés communes et inhabituelles chez les métaux. Ce sont notamment de puissants catalyseurs et sous certaines formes ils peuvent être toxiques.
Cristallographie aux rayons XLa cristallographie aux rayons X, radiocristallographie ou diffractométrie de rayons X (DRX, on utilise aussi souvent l'abréviation anglaise XRD pour X-ray diffraction) est une technique d'analyse fondée sur la diffraction des rayons X par la matière, particulièrement quand celle-ci est cristalline. La diffraction des rayons X est une diffusion élastique, c'est-à-dire sans perte d'énergie des photons (longueurs d'onde inchangées), qui donne lieu à des interférences d'autant plus marquées que la matière est ordonnée.
Métal nobleUn métal noble est un métal qui résiste à la corrosion et à l'oxydation. Notamment, c'est un métal qui ne peut pas être dissous par une solution d'un acide seul. En revanche, la plupart de ces métaux sont dissous par « l'eau régale ». vignette|upright=1.5|alt=Échantillons de métaux nobles|right|Collection de métaux nobles (incluant le cuivre, le rhénium et le mercure dans une acceptation plus large de cette famille) placés selon leur position dans le tableau périodique.
OsmiumL'osmium est l'élément chimique de numéro atomique 76, de symbole Os. Son corps simple est un métal platinoïde lourd, de couleur grise, dur et cassant. Du grec osme qui signifie « odeur », l'osmium a été découvert en 1803 par Smithson Tennant à Londres, avec l'iridium dans les résidus de la dissolution du platine dans de l'eau régale. Ce premier résidu de fabrication industrielle est principalement de l'osmiure d'iridium, un corps dur inaltéré dans l'attaque du minerai de platine par l'eau régale.
Cycle catalytiquevignette|300px|Exemple de cycle catalytique : le procédé Monsanto. En chimie, un cycle catalytique est un terme désignant un mécanisme réactionnel à plusieurs étapes impliquant un catalyseur. Le cycle catalytique est la principale façon de décrire le rôle des catalyseurs en biochimie, chimie organométallique, science des matériaux Souvent, de tels cycles montrent la conversion d'un précatalyseur en catalyseur. Comme les catalyseurs sont régénérés, les cycles catalytiques sont habituellement écrits comme une séquence de réactions chimiques en forme de boucle.
CristallographieLa cristallographie est la science qui se consacre à l'étude des cristaux à l'échelle atomique. Les propriétés physico-chimiques d'un cristal sont étroitement liées à l'arrangement spatial des atomes dans la matière. L'état cristallin est défini par un caractère périodique et ordonné à l'échelle atomique ou moléculaire. Le cristal est obtenu par translation dans toutes les directions d'une unité de base appelée maille élémentaire.
Rayon Xvignette|upright|Une des premières radiographies, prise par Wilhelm Röntgen. alt=Rayon X des poumons humains|vignette|189x189px|Rayon X des poumons humains. Les rayons X sont une forme de rayonnement électromagnétique à haute fréquence constitué de photons dont l'énergie varie d'une centaine d'eV (électron-volt), à plusieurs MeV. Ce rayonnement a été découvert en 1895 par le physicien allemand Wilhelm Röntgen, qui a reçu pour cela le premier prix Nobel de physique ; il lui donna le nom habituel de l'inconnue en mathématiques, X.
Tube à rayons XLes tubes à rayons X sont des dispositifs permettant de produire des rayons X, en général pour trois types d'applications : radiographie et tomographie (, science des matériaux) ; Cristallographie aux rayons X (diffraction de rayons X, voir aussi l'article Diffractomètre) ; analyse chimique élémentaire par spectrométrie de fluorescence des rayons X. Il existe plusieurs types de tubes. Quel que soit le type de tube, la génération des rayons X se fait selon le même principe.
Diffusion des rayons XLa diffusion des rayons X (X-ray scattering en anglais) est une technique d'analyse basée sur la diffusion des ondes de rayons X par une substance. Alors que la diffraction des rayons X ne peut être utilisée qu'avec des substances cristallines, la diffusion des rayons X peut être utilisée pour des substances cristallines ou amorphes. La diffusion des rayons X est basée sur l'interaction des rayons X avec les électrons des atomes. La diffusion des rayons X peut être élastique ou inélastique.