Optimisation linéairethumb|upright=0.5|Optimisation linéaire dans un espace à deux dimensions (x1, x2). La fonction-coût fc est représentée par les lignes de niveau bleues à gauche et par le plan bleu à droite. L'ensemble admissible E est le pentagone vert. En optimisation mathématique, un problème d'optimisation linéaire demande de minimiser une fonction linéaire sur un polyèdre convexe. La fonction que l'on minimise ainsi que les contraintes sont décrites par des fonctions linéaires, d'où le nom donné à ces problèmes.
Optimisation linéaire en nombres entiersL'optimisation linéaire en nombres entiers (OLNE) (ou programmation linéaire en nombres entiers (PLNE) ou integer programming (IP) ou Integer Linear Programming (ILP)) est un domaine des mathématiques et de l'informatique théorique dans lequel on considère des problèmes d'optimisation d'une forme particulière. Ces problèmes sont décrits par une fonction de coût et des contraintes linéaires, et par des variables entières.
Nombre rationnelUn nombre rationnel est, en mathématiques, un nombre qui peut s'exprimer comme le quotient de deux entiers relatifs. On peut ainsi écrire les nombres rationnels sous forme de fractions notées où , le numérateur, est un entier relatif et , le dénominateur, est un entier relatif non nul. Un nombre entier est un nombre rationnel : il peut s'exprimer sous la forme . Chaque nombre rationnel peut s'écrire d'une infinité de manières différentes sous forme de fraction, par exemple ...
Entier relatifEn mathématiques, un entier relatif, un entier rationnel ou simplement un nombre entier est un nombre qui se présente comme un entier naturel auquel on a adjoint un signe positif ou négatif indiquant sa position par rapport à 0 sur un axe orienté. Les entiers positifs (supérieurs à zéro) s'identifient aux entiers naturels : 0, 1, 2, 3... tandis que les entiers négatifs sont leurs opposés : 0, −1, −2, −3... L'entier 0 lui-même est donc le seul nombre à la fois positif et négatif.
Algorithme du simplexeLalgorithme du simplexe est un algorithme de résolution des problèmes d'optimisation linéaire. Il a été introduit par George Dantzig à partir de 1947. C'est probablement le premier algorithme permettant de minimiser une fonction sur un ensemble défini par des inégalités. De ce fait, il a beaucoup contribué au démarrage de l'optimisation numérique. L'algorithme du simplexe a longtemps été la méthode la plus utilisée pour résoudre les problèmes d'optimisation linéaire.
Fraction dyadiquevignette|upright=1.2|Fractions rationnelles dyadiques dans l'intervalle de 0 à 1|alt=Intervalle unité subdivisé en 1/128 èmes En mathématiques, une fraction dyadique ou rationnel dyadique est un nombre rationnel qui peut s'écrire sous forme de fraction avec pour dénominateur une puissance de deux. On peut noter l'ensemble des nombres dyadiques formellement par Par exemple, 1/2 ou 3/8 sont des fractions dyadiques, mais pas 1/3.
Dépassement d'entiervignette|Le vol 501 d'Ariane 5 en 1996 s'est soldé par sa destruction en raison d'un dépassement d'entier. Un dépassement d'entier (integer overflow) est, en informatique, une condition qui se produit lorsqu'une opération mathématique produit une valeur numérique supérieure à celle représentable dans l'espace de stockage disponible. Par exemple, l'ajout d'une unité au plus grand nombre pouvant être représenté entraîne un dépassement d'entier. Le dépassement d'entier porte le numéro CWE-190 dans la nomenclature Common Weakness Enumeration.
Algorithme de rechercheEn informatique, un algorithme de recherche est un type d'algorithme qui, pour un domaine, un problème de ce domaine et des critères donnés, retourne en résultat un ensemble de solutions répondant au problème. Supposons que l'ensemble de ses entrées soit divisible en sous-ensemble, par rapport à un critère donné, qui peut être, par exemple, une relation d'ordre. De façon générale, un tel algorithme vérifie un certain nombre de ces entrées et retourne en sortie une ou plusieurs des entrées visées.
Construction des nombres réelsEn mathématiques, il existe différentes constructions des nombres réels, dont les deux plus connues sont : les coupures de Dedekind, qui définissent, via la théorie des ensembles, un réel comme l'ensemble des rationnels qui lui sont strictement inférieurs ; les suites de Cauchy, qui définissent, via l'analyse, un réel comme une suite de rationnels convergeant vers lui. C'est à partir des années 1860 que la nécessité de présenter une construction des nombres réels se fait de plus en plus pressante, dans le but d'asseoir l'analyse sur des fondements rigoureux.
Rationnel de GaussEn mathématiques, un est un nombre complexe dont les parties réelle et imaginaire sont des nombres rationnels. L'ensemble des rationnels de Gauss est donc C'est un sous-corps de C, généralement noté Q(i) ou Q[i]. Ces nombres tirent leur nom du mathématicien allemand Carl Friedrich Gauss. Q(i) est le corps de rupture du polynôme X + 1. C'est donc un corps quadratique imaginaire et un corps cyclotomique. L'anneau des entiers de Q(i) est l'anneau Z[i] des entiers de Gauss. Son discriminant est –4.