Théorème du point fixe de LefschetzEn mathématiques, le théorème du point fixe de Lefschetz est une formule qui compte le nombre de points fixes d'une application continue d'un espace compact X dans lui-même en utilisant les traces des endomorphismes qu'elle induit sur l'homologie de X. Il est nommé d'après Solomon Lefschetz qui l'a démontré en 1926. Chaque point fixe est compté avec sa multiplicité. Une version faible du théorème suffit à démontrer qu'une application qui n'a aucun point fixe doit vérifier certaines propriétés particulières (comme une rotation du cercle).
Entier (informatique)En informatique, un entier est un type de donnée qui représente un sous-ensemble fini de nombres entiers relatifs. On utilise aussi le terme type de données entières (integral type data). Un type de donnée est la nature des valeurs que peut prendre une donnée. Certains traitements comme le recensement des États-Unis ont d'abord été effectués en utilisant une représentation décimale à l'aide de cartes perforées. Le système décimal utilise dix chiffres (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) et où leur position correspond à une puissance de 10 (1, 10, 100, 1000, etc.
Matrices semblablesEn mathématiques, deux matrices carrées A et B sont dites semblables s'il existe une matrice inversible P telle que . La similitude est une relation d'équivalence. Deux matrices sont semblables si et seulement si elles représentent le même endomorphisme d'un espace vectoriel dans deux bases (éventuellement) différentes. Il ne faut pas confondre la notion de matrices semblables avec celle de matrices équivalentes. En revanche, si deux matrices sont semblables, alors elles sont équivalentes.
ML (langage)ML (contraction de Meta Language) est un langage de programmation généraliste fonctionnel. ML fut initialement développé par Robin Milner et d'autres personnes dans les années 1970 à l'université d'Édimbourg, pour le système de preuves formelles (LCF). R. Milner rencontrait des difficultés avec le système de typage de Lisp qui permettait de « prouver » des assertions fausses. ML est un langage fonctionnel impur : il est possible de programmer en impératif et, en conséquence, les fonctions peuvent être sujettes à des effets secondaires non désirés (dits « de bord »), contrairement à des langages purement fonctionnels comme Haskell.
SolverA solver is a piece of mathematical software, possibly in the form of a stand-alone computer program or as a software library, that 'solves' a mathematical problem. A solver takes problem descriptions in some sort of generic form and calculates their solution. In a solver, the emphasis is on creating a program or library that can easily be applied to other problems of similar type. Types of problems with existing dedicated solvers include: Linear and non-linear equations.
Exponentielle intégraleEn mathématiques, la fonction exponentielle intégrale, habituellement notée Ei, est définie par : Comme l'intégrale de la fonction inverse () diverge en 0, cette définition doit être comprise, si x > 0, comme une valeur principale de Cauchy. vignette|Représentation graphique de la fonction exponentielle intégrale. La fonction Ei est liée à la fonction li (logarithme intégral) par : vignette|upright=1.5|Représentation graphique des fonctions E (en haut) et Ei (en bas), pour x > 0.
Symmetric differenceIn mathematics, the symmetric difference of two sets, also known as the disjunctive union, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets and is . The symmetric difference of the sets A and B is commonly denoted by or The power set of any set becomes an abelian group under the operation of symmetric difference, with the empty set as the neutral element of the group and every element in this group being its own inverse.
Algèbre graduéevignette|Un organigramme de diverses structures algébriques et leurs relations les unes avec les autres. En mathématiques, en algèbre linéaire, on appelle algèbre graduée une algèbre dotée d'une structure supplémentaire, appelée graduation. Soit A une algèbre sur un corps (ou plus généralement sur un anneau) K. Une graduation sur A est la donnée d’une famille de sous-espaces vectoriels de A vérifiant : c'est-à-dire que . L’algèbre A est alors dite graduée (parfois N-graduée, comme cas particulier de la notion d'algèbre M-graduée pour un monoïde M).